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This project is focused on the combinatorial-geometrical method that has enabled to solve
several complicated problems within the group theory like the construction of a infinite finitely
generated group with identity xn = 1 to name one (The restricted Burnside problem). The
goal of this project is the construction of this group. The following results were obtained by
A. Yu. Olshanskii. The fact that group relations’ consequences could be presented geometrically
is the essence of the method.

We should introduce some useful ideas and definitions. Then we begin constructing diagrams
on a plane. Usually the diagram is a polygon map. So it is interesting to handle the following
preliminary problems.

� A1. A convex 1993-gon was cut to convex 7-gons. Prove that exist four neighboring vertices
of the 1993-gon which belong to same 7-gon. (A vertex of a 7-gon cannot belong to an edge of
the 1993-gon.)

� A2. Can one cut a plane: a) to convex 7-gons? b) to equal convex 7-gons?

� A3. Can one cut a plane to convex 7-gons such that any unite circle intersects with less
then million of them?

� A4. Let us consider a plane divided into 7-gons which diameters are less or equal to 1. Fix
a point O. Let N(R) be the number of 7-gons falling into the circle with diameter R and center
O. Prove that there exists λ > 1 such that N(R) > λR.

Let us consider an alphabet L. Let L contain the following letters:

a, a−1, b, b−1, c, c−1, . . .

For any letter in our alphabet there exists a pair: a and a−1, b and b−1 and so on. These letters
are called inverse letters. These letters can be used to construct words (some finite sequences of
letters). Examples: aba, aba−1ab−1c, a−1a−1bbca−1. Words can be transformed by either
cancelling or inserting two neighboring inverse letters. Thus aba−1ab−1c transforms into ac:
aba−1ab−1c ≡ abb−1c ≡ ac. Some words (for example, b−1aa−1b) can be transformed into
an empty word. Let this word be labeled zero.

Suppose that some words equal to 1. For example, {aba−1b−1 = 1; ca = 1}. Such
relations are said to be defining relations. We can use these equalities to obtain new ones.
For instance, suppose that aba−1b−1 = 1. Let us add a word ba to both sides on the right.
(“multiply by ba on the right”), We obtain aba−1b−1ba = ba. Having cancelled inverse letters
on the left side, we obtain ab = ba. Having added c to both sides of the equality (on the left)
we get cab = cba. Since ca = 1, we get b = cba.

After considering the defining relations we see that some words are equivalent or equal.
We can multiply an equality by the same factor or cancel inverse letters. Thus we obtain new
relations (equal words). Suppose we have some defining relations. Let us consider two words.
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Can we find out whether these words are equal? The thing is that there is no general algorithm.
This is a very important result in higher algebra. Nevertheless if the defining relations satisfy
certain terms, such an algorithm exists in fact.

The main issue. Let the common begining of any pair of defining relations A = 1 and
B = 1 be either empty or its length constitutes less then 1/6 of the A and B lenght. Thus
there exists an algorithm enabling for any pair of words to find out if they are equal or not.

The main issue will be discussed below. First we should practice with simple examples.
Herewith, we assume that the alphabet consists of the letters from the defining relations only.

Let us consider an example. Suppose aba = 1, bab = 1. Let us prove that a = b. Indeed,
a ≡ abaa−1b−1 ≡ a−1b−1 ≡ a−1b−1bab ≡ b. So there exist three nonequivalent words: (1,
a, a2).

Consequently, if a letter occurs in a word twice, we shall use powers in our notation. So
we shall write ak instead of aaa . . . aa

︸ ︷︷ ︸

k

. If a power is negative, we put xk = (x−1)−k. In

particular, a−3 = (a−1)3.

� B1. Let ba = abk be a defining relation such that k is a nonzero integer. Prove that any
word can be transformed to the form ambn; here m, n are integers.

� B2. Consider defining relations a4 = b3 = (ab)2 = 1. How many different words there
are?

� B3. Consider defining relations aba−2ba = b3 = 1. How many different words there are?

� B4. Consider defining relations a2 = b2 = (ab)n = 1. How many different words there
are?

There exists a way which lets illustrate consequences from defining relations. Look at the
pictures illustrating the two following consequences: a2b3 = b3a2 with the relation ab = ba;
and b6 = 1 with the relations b2 = a and a3 = 1. If we move around any cell then we read
one of the defining words, and if we move around the whole map then we read the consequence.
If we move in the opposite direction then we read letters as inverse ones.
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рис. 1 рис. 2

Hence the plane can be divided into some polygons. Now we shall give some definitions.
The area inside any polygon is said to be a cell. The e dges of the polygons are called the edges.
Let us write a letter near each edge on the map such that the words written arround any cell
correspond to the defining relations words.
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� B5. Draw a map for the consequence a2b2c2 = 1 using the defining relations a3 = 1,
b3 = 1, c3 = 1, abc = 1.

� B6. Draw a map for the consequence ab−1aba−1b = 1 using the defining relations a3 = 1,
b3 = 1, abab = 1.

In fact, the discussed above structures of words with relations have their own name.

Let us consider finite or infinite set of elements G. We assume the law, according to which
a third element z is uniquely obtained from any two equal or different elements x and y of such
a set, is known. This operation is called composition or symbolic multiplication of elements and
it’s result is called the product of the elements x and y. We denote the product of x and y by
x ∗ y. We note that the law of composition may be such that the result depends on the order
of the elements multiplied. So x ∗ y is not in general equal to y ∗ x.

We will discuss the operations such that an equality (x ∗ y) ∗ z = x ∗ (y ∗ z) holds for any
x, y, z from G. In these cases we say that the operation ∗ is associative.

Let G be a set of all words in our finite alphabet. We can assign a product operation on
G: a word W is called the product of two words A and B if W is a result of attaching of B
to A. Specifically, If A = a1a2 . . . ak, B = b1b2 . . . bn then W = a1a2 . . . akb1b2 . . . bn.
Obviously, this operation is associative. It is easy to understand the meaning of the associativity.
The overall result of a product x1 ∗ x2 ∗ · · · ∗ xn is not depends on brackets placement. So the
products (x1 ∗ x2) ∗ (x3 ∗ x4) and x1 ∗ ((x2 ∗ x3) ∗ x4) are equal.

Definition. A set G with an operation ∗ is called a group if the following three conditions
hold:

(i) For any x, y, z ∈ G the following condition holds: (x ∗ y) ∗ z = x ∗ (y ∗ z). So the
operation is assotiative;

(ii) There exists an element 1 in G such that x∗1 = 1∗x = x for any x ∈ G. This element
is called an identity;

(iii) For any x ∈ G there exists a x−1 ∈ G such that x ∗ x−1 = x−1 ∗ x = 1.

We shall often ommit the ∗ sign and write (for example) ab = c or xy = yx.

The set of all words in a finite alphabet is a group: an empty word is an identity. If we
replace any letter in a word with inverse letter and rewrite the word in the reverse order then
we obtain an inverse word. For example, the word z−1y−1x−1d−1c−1b−1a−1 is inverse for the
word abcdxyz. And aba−1c−1ba−1 is inverse for ab−1cab−1a1. If we write two inverse words
one after another then we can obtain an empty word (identity) by several transformations.

Now assume defining relations. It is easy to see that some words become equivalent. Let us
consider these words as the same element of the group. So if we want to make some operations
with this element we can choose any of these words.

The number of different elements of a group may be finite, in which case the group is called
finite and the number of its elements is called its order. The order of a group is denoted by |G|.

A group is abelian (or commutative) if xy = yx for all x, y ∈ G.
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� B7. Prove that if for any x from a group x2 = 1, then the group is abelian.

Definition. A nonempty subset H ⊂ G is called a subgroup of a group G if the following
conditions hold:

(i) if a, b ∈ H then ab ∈ H ;

(ii) if a ∈ H then a−1 ∈ H .

It is easy to see that the identity of G belongs to H (suppose a ∈ H , then a−1 ∈ H and
aa−1 ∈ H). Hence H is a group with respect to the mother-group G operation.

Note that there are two trivial subgroups in any given group: the whole group and the group
with one element {1}. These two groups are called improper. Any other group is called proper.
How can one find any proper group? Suppose a ∈ G. Let us find some powers of a. The set
{ak} is an abelian (commutative) subgroup in G. This group is called a cyclic subgroup of G
and is denoted by 〈a〉. The element a is said to be a generator of 〈a〉. If 〈a〉 = G, then we
say that G is a cyclic group.

Suppose n is the minimal integer such that an = 1. The integer n is called an order of
element a. If there are no such n, then we say that a has an infinite order.

A cyclic group is generated by its unique element. Let us try to generate a group by several
elements.

Suppose that the subset 〈S〉 in G possesses all finite products

g1
α1g2

α2 . . . gk
αk ,

gi ∈ S, αi = ±1, i = 1, . . . , k. It is easy to see that 〈S〉 is a subgroup in G. The inverse
element for the product above is

gk
βkgk−1

βk−1 . . . g1
β1,

βi = −αi. If every element of a group G is the product of a finite number of elements and
inverses of elements from S, then we call the subset S a set of generators of G and call the
elements of S generating elements.

Up to this point we considered every word as a finite letter sequence. Nevertheless, let us
have a diagram for the defining relation a1a2 . . . an = 1. If we look at this diagram, than we
cannot find out which letter is the first in the word. Hence it is good to consider a set of all
cyclic shifts of a word. This set is called a cyclic word. Let a subset of a cyclic word (that is
not cyclic!) be a subset of one of a word’s cyclic shifts. For example, a2b, aba, ba2, a3 are
subwords of lenght 3 of the cyclic word a2ba. A word is called cyclic irredundant if every of
it’s cyclic shifts is irredundant.

Cyclic shifts appear in groups too. Two elements a and b are called conjuagate if there exists
x ∈ G such that a = xbx−1. It is easy to see that all cyclic shifts are pairwise conjuagate.

� B8. Consider a group with some defining relations. Let us take a word. Prove that there
exists a conjuagate cyclic irredundant one.
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� B9. Пусть группа задана определяющими соотношениями U1 = 1, . . . , Uk = 1. До-
кажите, что если W ≡ 1 (слово W приводится к пустому), то существуют такие слова
X1, . . .Xk, что слово

X1U1X1
−1X2U2X

−1
2 . . . XkUkX−1

k

приводится к W только сокращениями рядом стоящих взаимно-обратных элементов.

� B9. Consider the group with the following defining relations: U1 = 1, U2 = 1, . . .Uk = 1.
Suppose that W ≡ 1. Prove that there exist words X1, X2, . . .Xk, such that one can transform
the word

X1U1X1
−1X2U2X

−1
2 . . . XkUkX−1

k

into an empty word using only the cancellations of neighboring inverse letters.
Suppose a group satisfies the following equalities:

a3 = 1, bab−1 = c. Hence we obtain the relation
c3 = 1. This conclusion can be illustrated by the
picture 3. Indeed, if we move around any triangle
cell, then we read the word a3. If we move around
any quadrangle cell, then we read the word cba−1b−1.
If we move around the edges of the whole map, we
read the word c3. This word is a consequence of the
equalities a3 = 1 and cba−1b−1 = 1
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c

c

c

рис. 3

Let us describe how to construct such examples. In order to do this, we consider the
conclusion a3 = 1, b2 = a → a3b−1a2b3 = 1 in detail. First we convert a3b−1a2b3 = 1 into
the form (a3)(b−1a3b)(b−1a−1b2b). (Here we present our word as a product of some defining
relation words and its’ inverses.) Let us draw a petal for each product efficient. (see pict. 4.)
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рис. 4

Every petal is a circle with a stem. Then we mark every circle with a letters. Finally we obtain
defining relation words (in this example a3 или a−1b2) on the circles and conjugating words
(in this example b−1 or an empty word) on the stems. Now walk around all the petals. It is
easy to see that we can read the right part of the equality

a3b−1a2b3 = (a3)(b−1a3b)(b−1a−1b2b).

We want to obtain the word graphically equal to the left part of this equality. So we need to
do some cancellations. We do these cancelations by a conglutination of the stems and two edges
of the second and the third circles. Finally we obtain the diagram with the word a3b−1a2b3

on the outline.

The construction of any other conclusion is performed in a similar way. However there are
many different diagrams for one conclusion W = 1.
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� C1. The van Kampen lemma. Suppose that W is a nonempty word in the alphabet
L̄ = L ∪ L−1 ∪ 1; then W = 1 iff there exists a diagram which label graphically equals W .

Consider the group with the following defining relations: U = {U1 = 1, . . . , Uk = 1}. Let
us agree that every word Ui is a cyclic irredundant one and if a word R belongs to the system
of the defining relations then R−1 also does. Also we may assume that if XY = 1 is a defining
relation, then Y X = 1 is a defining relation too. A system of defining relations is symmetric
if it satisfies all these conditions. It is easy to see that an addition of inverse letters and cycle
shifts does not change the set of all consequences. Hence it does not change the group G.

If X is a common beginning of two different words XY1 и XY2 from U , then we say that
X is a piece with respect to U . Consider the group G with the system of defining relations U .
Suppose that the lenght of every piece X is less than 1/6 of the length of any word this piece
belongs to. Then we say that the group G is a group with small cancellations. This condition
means that only small part could be cancelled in the product UiUj of defining relations.

If we transform words in a group with small cancellations then we «leave many traces» of
the defining relations.

� C2. Suppose that G is a group with small cancellations. Let us consider a diagram over
G. Suppose that the label of the outline φ(q) is a cyclic irredundant word and there are no
proper subwords in the cyclic word φ(q) which are equal to 1. Then there exists a cell P with
an external arc which length is more than half of the cell perimeter.

� C3. Suppose that G is a group with small cancellations defined by a set of relations. Prove
that there exists an algorithm enabling for any pair of words to find out if they are equal or
not.
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