Theorem on altitudes and the Jacobi identity

A. Zaslavskiy and M. Skopenkov

Solutions of the problems suggested before the intermediate finish.

1. Denote by O the center of our sphere. Let γ be the plane passing through the points O, A and B. Let c be the spherical line obtained as the intersection of the sphere and γ . Then c is precisely the spherical line passing through the points A and B.

On the other hand, by our definition, the vectors $\vec{A} = \overrightarrow{OA}$ and $\vec{B} = \overrightarrow{OB}$ correspond to the points A and B, respectively, and the vector $[\vec{A}, \vec{B}]$ is orthogonal to both \overrightarrow{OA} and \overrightarrow{OB} . Therefore the vector $[\vec{A}, \vec{B}]$ is also orthogonal to the plane γ . Finally, by our definition of correspondence between vectors and spherical lines, we obtain that the vector $[\vec{A}, \vec{B}]$ corresponds to the spherical line c.

2. Recall that the intersection of two spherical lines is a pair of two diametrically opposite points on the sphere. Let C be one of the intersection points of the spherical lines a and b. We shall now show that the vector \overrightarrow{OC} is parallel to the vector $[\vec{a}, \vec{b}]$. Let α be the plane containing the point O and the spherical line a. By definition of the correspondence between spherical lines and vectors, the vector a is orthogonal to the plane α . The segment OC lies in the plane α , therefore $\overrightarrow{OC} \perp \vec{a}$. Similarly, $\overrightarrow{OC} \perp \vec{b}$. Therefore the vectors \overrightarrow{OC} and $[\vec{a}, \vec{b}]$ are collinear, whence the vector $[\vec{a}, \vec{b}]$ corresponds to the point C (recall here that all vectors collinear to \overrightarrow{OC} correspond to the point C).

3. Let *c* be the line passing through the point *A* and orthogonal to the line *b*. We shall say that *c* is the *perpendicular* dropped from *A* onto *b*. It suffices to prove that the vector \vec{c} corresponding to the line *c* is orthogonal to both the vector \vec{A} and the vector \vec{b} (indeed, in this case the vector \vec{c} is collinear to the vector $[\vec{A}, \vec{b}]$ and we know that collinear vectors correspond to the same line).

First we show that $\vec{c} \perp \vec{A}$. Consider the plane γ passing through the point O and containing the line c. Since the point A belongs to c, the point A also belongs to γ . Therefore \vec{c} is orthogonal to $\overrightarrow{OA} = \vec{A}$.

Now we show that $\vec{c} \perp \vec{b}$. Denote by β the plane passing through the point O and containing the line b. Since spherical lines b and c are orthogonal, the planes β and γ are also orthogonal. But then any vector orthogonal to β must also be orthogonal to any vector orthogonal to γ , and our proof is complete.

4. Answer: the points A, B and C lie on the same line.

Solution. The condition A + B + C = 0 implies that the vectors \vec{A} , \vec{B} and \vec{C} are parallel to some plane π . We may assume here that the plane π passes through the point O and therefore defines a spherical line p. Then the points A, B, and C lie on the spherical line p.

5. Answer: the three lines a, b and c all pass through the same point.

Solution. The condition $\vec{a} + \vec{b} + \vec{c} = 0$ implies that the vectors \vec{a} , \vec{b} and \vec{c} are parallel to some plane π . Take the point P on our sphere such that $\overrightarrow{OP} \perp \pi$. Then the lines a, b and c all pass through P. Indeed, since \overrightarrow{OP} is orthogonal to π , it is also orthogonal to the vector \vec{a} , which, by Problem 3, implies that the point P lies on the line a. Similarly, the point P lies on the lines b and c.

6. Consider the identity $[\vec{A}, [\vec{B}, \vec{C}]] = \vec{B}(A, C) - \vec{C}(A, B)$. If to the vector \vec{A} one adds an arbitrary vector collinear to $[\vec{B}, \vec{C}]$ then neither the left nor the right part of the identity changes. Therefore it suffices to consider the case when the vectors \vec{A}, \vec{B} and \vec{C} are all parallel to the same plane.

Now observe that neither part of our identity changes if to the vector \vec{B} one adds a vector collinear to \vec{C} . Since \vec{A} , \vec{B} and \vec{C} are parallel to the same plane, we may assume that either \vec{B} or \vec{C} is collinear to \vec{A} .

For definiteness, assume that $\vec{B} \parallel \vec{A}$. Adding to the vector \vec{C} a vector collinear to \vec{B} we may assume that $\vec{C} \perp \vec{B}$. But if $\vec{B} \parallel \vec{A}$ and $\vec{B} \perp \vec{C}$, then it is easy to check directly that both parts of our identity are equal to $|\vec{A}| \cdot |\vec{B}| \cdot \vec{C}$. *Remark.* Our identity may also be proven by using linearity of both its parts.

7. The Jacobi identity is obtained by cyclically permuting the variables in the identity of Problem 6 and summing the resulting identities.