
HILBERT’S 13-TH PROBLEM AND BASIC PLANAR SETS

A. Skopenkov and I. Shnurnikov

PROBLEMS PROPOSED BEFORE THE INTERMEDIATE FINISH.

Motivation.
In the course of the solution of the Hilbert’s 13-th problem the notion of basic embedding

appeared. The main result of the present sequence of problems (problem 8b) is an elementary
solution of ’half’ of the Arnold problem on the characterization of basic subsets of the plane. The
most important unsolved problems here concern the characterization of smoothly basic subsets
of the plane.

The more difficult problems are marked by a star, and unsolved problems by two stars. If the
statement of a problem is an assertion, then it is required to prove this assertion.

Discontinuously basic subsets.

1. (a) Is it true that for any four numbers f11, f12, f21, f22 there exist four numbers g1, g2, h1, h2

such that fij = gi + hj for each i, j = 1, 2?
(b) Andrey Nikolaevich and Vladimir Igorevich play the ’Dare you to decompose!’ game.

Some cells of chessboard are marked. A. N. writes numbers in the marked cells as he wishes. V.
I. looks at the written numbers and chooses (as he wishes) 16 numbers a1, . . . , a8, b1, . . . , b8 as
’weights’ of the columns and the lines. If each number in a marked cell turns out to be equal to
the sum of weights of the line and the row (of the cell), then V. I. wins, and in the opposite case
(i.e., when the number in at least one marked cell is not equal to the sum of weights of the line
and the row) A. N. wins.

Prove that A. N. can win no matter how V. I. plays if and only if there does not exist a closed
route of a rook turning only at marked cells (the route is not required to pass through each
marked cell).

Let R
2 be the plane with a fixed coordinate system. Let x(a) and y(a) be the coordinates of

a point a ∈ R
2. An ordered set (either finite or infinite) {a1, . . . , an, . . .} ⊂ R

2 is called an array
if for each i we have ai �= ai+1 and x(ai) = x(ai+1) for even i and y(ai) = y(ai+1) for odd i. It
is not assumed that points of an array are distinct. An array is called closed if a1 = an.

2. Consider a closed array {a1, . . . , an = a1}. A decomposition for such an array is an
assignment of numbers at the projections of the points of the array on the x-axis and on the
y-axis. Is it possible to put numbers f1, . . . , fn ∈ R, where f1 = fn, at the points of the array so
that for each decomposition there exists an fi that is not equal to the sum of the two numbers
at x(ai) and y(ai)?

A subset K ⊂ R
2 is called discontinuously basic if for each function f : K → R there exist

functions g, h : R → R such that f(x, y) = g(x) + h(y) for each point (x, y) ∈ K.
3. (a) The segment K = 0 × [0, 1] ⊂ R

2 is discontinuously basic.
(b) The cross K = 0 × [−1, 1] ∪ [−1, 1] × 0 ⊂ R

2 is discontinuously basic.
4. (a) A criterion for a subset of the plane to be discontinuously basic. A subset of the plane

is discontinuously basic if and only if it does not contain any closed arrays.
(b) Given a set of marked cells in the cube 8 × 8 × 8, how can we see who wins in the 3D

analogue of the ’Dare you to decompose!’ game? In this analogue V. I. tries to choose 24
numbers a1, . . . , a8, b1, . . . , b8, c1, . . . , c8 so that the number at the cell (i, j, k) would be equal to
the sum ai + bj + ck of the three weights.

(c)** Define discontinuous basic subsets of the 3-space. Discover and prove the 3D analogue
of the above criterion.
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Continuously basic subsets.
Denote by |z, z0| = |(x, y), (x0, y0)| =

√
(x − x0)2 + (y − y0)2 the ordinary distance between

points z = (x, y) и z0 = (x0, y0) of the plane. Let K be a subset of R
2. A function f : K → R is

called continuous if for each point z0 ∈ K and number ε > 0 there exists a number δ > 0 such
that for each point z ∈ K if |z, z0| < δ, then |f(z) − f(z0)| < ε. It is sometimes convenient to
write (x, y) instead of z.

5. (a) The function f(x, y) =
√

x2 + y2 is continuous on the plane.
(b) The function f(x, y) equal to the integer part of x + y, is not continuous on the plane.
(c) Let a1, . . . , an be distinct points of K ⊂ R

2. Prove that there exists a continuous function
f : K → R such that f(ai) = (−1)i and |f(x)| ≤ 1 for each x ∈ K.

(d) Let K = {a1, . . . , a4n+4} be an array of 4n + 4 distinct points and f1, . . . , f4n+4 numbers
such that |(−1)i − fi| ≤ 1

2n . Let g(x(ai)), h(y(ai)), i = 1, . . . , 4n + 4, be numbers such that
fi = g(x(ai)) + h(y(ai)) for each i. Prove that maxi{g(x(ai))} > n.

In the sequel all functions are assumed to be continuous.
A subset K ⊂ R

2 is called (continuously) basic if for each continuous function f : K → R

there exist continuous functions g, h : R → R such that f(x, y) = g(x) + h(y) for each point
(x, y) ∈ K.

6. (a) A closed array is not basic.
(b) The segment K = 0 × [0, 1] ⊂ R

2 is basic.
(c) The cross K = 0 × [−1, 1] ∪ [−1, 1] × 0 ⊂ R

2 is basic.
7. (a) If a subset of the plane is basic, then it is discontinuously basic.
(b) A completed array is the union of a point a0 ∈ R

2 with an infinite array {a1, . . . , an, . . .} ⊂
R

2 of distinct points which converges to the point a0 (i.e. for each ε > 0 there exists a positive
integer N such that for each i > N we have |ai, a0| < ε). Prove that any completed array is not
basic. (Note that it is discontinuously basic).

(c) Let [a, b] be the rectilinear arc which connects points a and b. Prove that the cross
K = [(−1,−2), (1, 2)]∪ [(−1, 1), (1,−1)] is not basic.

(d) Let mij = 2−3 ·2−i + j ·2−2i. Consider the set of points (xi,2l, xi,2l) and (xi,2l−1, xi,2l−2),
where i varies from 1 to ∞ and l = 1, 2, 3, . . . , 2i−1. Prove that this subset of the plane does not
contain any infinite arrays but contains arbitrary long arrays.

(e) The union of the set from the previous problem and the point (2, 2) is not basic.
8. Let K ⊂ R

2 be the image of an arc [0, 1] under a continuous map [0, 1] → R
2.

(a) Each continuous function f : K → R assumes its lowest value and greatest value. Hint:
reduce this problem to an analogous theorem on continuous functions [0, 1] → R.

(b)* If K contains arbitrary long arrays, then K is not basic.
Hint. Assume that K contains arbitrary long arrays and is basic. We may assume that points

of each array are distinct. Therefore for each n there is an array {an
1 , . . . , an

4n+4} of 4n+4 distinct
points in K. Then there exists continuous function fn : K → R such that fn(an

i ) = (−1)i and
|fn(x)| ≤ 1 for each x ∈ K. For each function G : K → R its maximum is ‖G‖ := maxx∈K |G(x)|.
Let f : K → R and g, h : R → R be functions such that ‖f−fn‖ < 1/2n and f(x, y) = g(x)+h(y)
for each (x, y) ∈ K. Then ‖g‖ > n...


