Around the Feet of Bisectors

Main problems

Theory

- Nagel point.
- Gergonne point.
- Isogonality.
- Symmedians and Lemoine point.
- Quadrilateral complete. The Gauss line and the Aubert line.
- Three homothety centers theorem.
- Feuerbach theorem. Feuerbach points
- 13. Let the triangle ABC be given. The bisector of angle A intersects the sideline BC in point A_1 and the circumcircle in point A_0 . The points C_1 and C_0 are defined similarly. B_{00} is the common point of lines A_0C_0 and A_1C_1 . Then the lines $B_{00}I$ and AC are parallel.
- 14. Prove that the line $B_{00}B$ touches the circumcircle of *ABC*.
- 15. Let the circle b_{00} with center B_{00} pass through B. Then b_{00} passes through I.
- 16. Let B_3 be the common points of circle Ω , distinct from B, with b_{00} . Let B_0 be the common points of circle Ω , distinct from B, with the bisector of angle B. Then $\angle B_0 B_3 I = 90^\circ$.
- 17. Let N be the Nagel point of ABC. Then the lines BN and BB_3 are isogonal with respect to ABC.
- 18. Let L be the common point of A_0C_1 and C_0A_1 . Then the midpoint of the segment AC lies in the line LI.
- 19. Let the points A_{00} and C_{00} be defined similarly to B_{00} (see problem 13). Then these three points are collinear. Let the line $A_{00}B_{00}$ be denoted by l_{00} . Then l_{00} is parallel to the external bisectors axe.
- 20. Let the bisectors of triangle *ABC* intersect its circumcircle in points A_0 , B_0 , C_0 , distinct from *A*, *B*, *C*. Then the common points of lines *AB* and A_0B_0 , *BC* and B_0C_0 , *CA* and C_0A_0 are collinear on the line l_0 parallel to external bisectors axe.
- 21. Prove that the lines ℓ_{00} and ℓ_0 divide the distance between *I* and the external bisectors axe ℓ into three equal parts.
- 22. Let the internal bisectors axe ℓ_2 intersect Ω in the points E, D. The circle passing through the points I, E, D is called b_2 . Then b_2 passes through the excenters I_1 and I_3 .

- 23. Prove that the radius of b_2 is twice greater than the circumradius R.
- 24. Prove that I_2 is the homothety center of Ω and b_2 .
- 25. Prove that the line $B_{00}I$ (see problem 13) is tangent to the circle b_2 .
- 26. Prove that the tangents to the excircle ω_2 in its common points with Ω are also tangent to the circle b_2 .
- 27. Let *D* be one of common points of internal bisectors axe ℓ_2 with Ω . *D'* is the point of Ω opposite to *D*. Then one of common points of Ω and ω_2 lies on the line $D'I_2$ and the second lies on the circle $(OD'I_2)$.
- 28. Given the radius R and r_2 . Find the distance between the common points of internal bisectors axe ℓ_2 with Ω .
- 29. Prove that the line *OB* touches the circle passing through *B* and the feet of the internal and external bisectors of angle *ABC*.
- 30. Let *K* be distinct from *B* common point of Ω with the circle passing through *B* and the feet of the internal and external bisectors of angle *ABC*. Prove that *K* lies on the symmedian of angle *ABC*.
- 31. Prove that the circumcenter of the triangle lies in the Aubert line of quadrilateral formed by four bisectors axes.
- 32. Prove that the Lemoine point of the triangle lies in the Ober line of quadrilateral formed by four bisectors axes. (<u>Remark</u>: from the problems 31 and 32 the orthocenter of the triangle formed by the feet of internal bisectors is collinear with the circumcenter and the Lemoine point.)
- 33. Let B_5 be the common point of tangents defined in problem 26. Prove that B_5 lies in the segment between I and the touching point of ω_2 with the sideline AC.
- 34. Let the points A_5 and C_5 be defined similarly to B_5 . Then the lines AA_5 , BB_5 , CC_5 are concurrent in the point *T*. The point *T* is collinear with Gergonne point *G* and the centroid *M* and GM: MT = 2:1.
- 35. Let F, F_1 , F_2 , F_3 be the internal and external Feuerbach points. Prove that the feet of internal and external bisectors lies in 6 lines defined by F, F_1 , F_2 , F_3 .
- 36. (*V.Tebault*) Prove that the triangles formed by the feet of external bisectors $(\Delta A_1 B_1 C_1)$ and external Feuerbach points $(\Delta F_1 F_2 F_3)$ are similar.
- 37. Prove that the circumcircle of the triangle formed by the feet of external bisectors $(\Delta A_1 B_1 C_1)$ pass through the internal Feuerbach point.