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Around of Feet of Bisectors

Introduction

Solutions
1.  Let 

 be the  B-excenter (fig. 1a). Let us consider the circle with diameter 

. The vertices 

 and 

 lie on this circle, therefore its center lies on the perpendicular bisector of 

 which intersects the diameter 

 at the midarc 

 of 

 of 

. Hence  

 is equidistant from 

, 

 ,  

 and 

.

Let  

 and 

  be the  A-excenter and C-excenter (fig. 1b). Let us consider the circle with diameter 

. The vertices 

 and 

 lie on this circle, therefore its center lies on the perpendicular bisector of 

 which intersects the diameter 

 at the midarc 

 of 

 of 

 containing B. Hence  

 is equidistant from 

, 

 , 

 and 

.

2.  Let 

 be the touch point of the incircle and 

(fig. 2a). Power of 

 with respect to 

 is 

. The triangles 

 and 

are similar, therefore 

. From problem 1 it follows that 

, hence 

. Therefore 

, i.e. 

.

Let 

 be the touch point of the excircle 

 and 

(fig. 2b). Power of 

 with respect to 

 is 

. The triangles 

 and 

 are similar, therefore 

. From problem 1 it follows that 

, hence 

. Therefore 

, i.e. 

.

3.  Let 

 be the circumcircle and 

 be the incircle of some triangle. From problem 2 it follows that  

.  Take an arbitrary point on 

, denote it B and draw the chords 

 and 

 tangent to 

 (fig. 3). From similarity of the triangles 

 and 

 it follows that 

, i.e. 

. From the Euler formula it follows that power of 

 with respect to 

 is 

. Therefore 

, it means that in the triangle 

  

, but 

,  

. We obtain that 

. It means that the lines 

 and 

 are symmetric with respect to 

, therefor 

 is tangent to 

.
4.  Consider the circles 

 and 

, which are the circumcircle and the excircle of some triangle. From problem 2 it yields that 

.  Take any point 

 in 

 and let the lines 

 and 

 be tangents to 

 (fig. 4). As the triangles 

 and 

 are similar 

, i.e. 

, but by Euler formula the degree of point 

 with respect to 

 is equal to 

. So, 

. This follows that the triangle 

 is isoscelles and 

, but 

, i.e 

. We obnain that 

. It means that the line 

 is the external bisector of angle 

, therefor 

 is tangent to 

.
5.  Firstly prove that the orthocentric axe is the radical axe of the circumcircle and the nine point circle. Consider two circles: 

 with diameter 

 and 

 with diameter 

 (fig. 5). The sideline 

 of orthotriangle is its common chord so lies in its radical axe. Therefor 

. Now consider the circumcircle 

 and the nine point circle 

. The degrees of point 

 with respect to 

 and 

 are equal to 

 and 

 respectively, i.e the degrees of the common point of respective sidelines of the triangle and its orthotriangle with respect to 

 and 

 are equal. This follows that the orthocentric axe is the radical axe of the circumcircle and nine point circle so it is perpendicular to the Euler line.

Consider now the triangle 

 formed by three excenters. Original triangle 

 is its orthotriangle, and the point 

 is its orthocenter. So the common points of external bisectors of the triangle 

 with respecive sidelines lie in the orthocentric axe of the triangle 

 i.e in the line perpendicular to the Euler line of this triangle. But the Euler line of the triangle 

 pass through its orthocenter 

 and nine point center 

, therefof it coincide with the line 

.

6. Firstly consider next problem: given two circles 

 and 

, their radical axe and center line intersect in the point 

 (fig. 6). Find the lenght of the segment 

. 
As the degrees of  

 with respect to both circles are equal,  

, 

, 

. So it is easy to express 

 through the radius of the circles and the distance O1O2..

Now take the circumcircle of the triangle 

with radius R as 

, and the circle 

 with radius 

 as 

. Then the distance 

 from the circumcenter 

 to radical axe 

 is equal to 

. Therefor the required distance is equal to 

.

7. The solution is analogously to the solution of the problem 5 with replacing of the triangle 

 to the triangles 

, 

, 

. The circumcircle 

 is the common nine-point circle of  аll these triangles and the lines 

 are the Euler lines of respective triangles. So the internal bisecors axis of the triangle 

 are the the radical axis of  

 and the circumcircles of the respective triangles.

8. Let 

 and 

 be the circumcircle and the excircle of the triangle 

 (fig. 8). Let D be the touching point of its common external tangent with 

. There are two limit “triangles” in the family of triangles with 

 and 

 as the circumcircle and the excircle. Consider a case when the secant 

 becomes tangent. This will be the common external tangent to 

 and 

. Then the points 

 and 

 coincide in the point 

, and the lines 

 and 

 coincide in the tangent

.

Consider now the circles 

 and 

, such that the tangent to 

 in its common point 

 passes through the point 

. Then 

, 

. As 

 we obnain 

. The lenght of chord 

 of circle 

 is equal to 

. But as 

 and 

 are the tangents to 

, 

. So 

, 

. Using the expression for 

 we obtain the Euler formula 

.
9. As the circles 

 and 

 are fixed, and by problem 6 the distance from the center of 

 to the external bisectors axe can be expressed through the radius of these circles, we obtain that all feet of external bisectors lies in the fixed line.
 
Inversely. Let A2 be an arbitrary point of this line. Let 

 and 

 be the common points of tangent to 

 passing through 

 with 

. By Poncelet theorem the sideline 

 generate the triangle 

 which have 

 as the foot of the external bisector.
10. As the circles 

 and 

 are fixed, and by problem 8 the internal bisectors axe 

 passes through the touching points of of common external tangents of these circles, 

 is the fixed line.
 
Inversely. Let 
[image: image1.wmf]1

B

 be an arbitrary point in the segment 

. Let 
[image: image2.wmf]A

and 

 be the common points of tangent to 

 passing through 

 with 

. By external Poncelet theorem the sideline 

 generate the triangle 

 which have 

 as the foot of the internal bisector.
11. Let be 

. By problem 8 this is eqivalent that the common external tangents to 

 and 

 are parallel to the line 

. So 

 is the diameter of the circumcenter i.e. 

.
12.   Let 

 be the circle with 

 as a diameter. Let 

 be the circle with 

 as a diameter (fig.12). The line 

 is the radical axe of 

 and 

. The line 

 is the radical axe of 

 and 

. So the line 

 is the radical axe of 

 and 

. Let 

 be the second common point of these circles. As 

, the point 

 lies in the line 

, and therefor 

.
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