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Around of Feet of Bisectors
Introduction

Solutions

1.  Let I 2  be the  B-excenter (fig. 1a). Let us consider the circle with diameter II 2 . The vertices
A  and C  lie on this circle, therefore its center lies on the perpendicular bisector of AC
which intersects the diameter II 2  at the midarc B0  of AC  of Ω . Hence  B0  is equidistant
from A , C  ,  I  and I 2 .

 Let  I1  and I 3   be the  A-excenter and C-excenter (fig. 1b). Let us consider the circle with di-
ameter I I1 3 . The vertices A  and C  lie on this circle, therefore its center lies on the perpen-
dicular bisector of AC  which intersects the diameter I I1 3  at the midarc ′B0  of AC  of Ω
containing B. Hence  ′B0  is equidistant from A , C  , I1  and I 3 .

 

2.  Let ′C  be the touch point of the incircle and AB (fig. 2a). Power of I  with respect to Ω  is
IO R BI IB2 2

0− = − ⋅ . The triangles BIC ′  and ′B CB0 0 are similar, therefore
BI IC B B B C/ /′ = ′0 0 0 . From problem 1 it follows that B C B I0 0= , hence
BI B I B B IC R r⋅ = ′ ⋅ ′ = ⋅0 0 0 2 . Therefore IO R R r2 2 2− = − ⋅ , i.e. IO R R r2 2 2= − ⋅ .

 Let ′C  be the touch point of the excircle ω 2  and AB (fig. 2b). Power of I2  with respect to Ω  is
I O R I B I B2

2 2
2 2 0− = ⋅ . The triangles BI C2 ′  and ′B CB0 0  are similar, therefore

BI I C B B B C2 2 0 0 0/ /′ = ′ . From problem 1 it follows that B C B I0 0 2= , hence
BI B I B B I C R r2 0 2 0 0 2 2⋅ = ′ ⋅ ′ = ⋅ . Therefore I O R R r2

2 2 2− = ⋅ , i.e. I O R R r2
2 2 2= + ⋅ .

 

3.  Let Ω = ( , )O R  be the circumcircle and ω = ( , )I r  be the incircle of some triangle. From
problem 2 it follows that  IO R R r2 2 2= − ⋅ .  Take an arbitrary point on Ω , denote it B and
draw the chords BA  and BC  tangent to ω  (fig. 3). From similarity of the triangles BIC ′  and
′B CB0 0  it follows that B C R r BI0 2/ /= , i.e. 2 0R r BI B C⋅ = ⋅ . From the Euler formula it

follows that power of I  with respect to Ω  is − ⋅ = − ⋅2 0R r BI IB . Therefore
BI B C BI IB⋅ = ⋅0 0 , it means that in the triangle B CI0   ∠ = ∠B IC ICB0 0 , but
∠ = ∠ + ∠B IC B ICB0 2/ ,  ∠ = ∠ + ∠ICB B ICA0 2/ . We obtain that ∠ = ∠IBC ICA . It
means that the lines AC  and BC  are symmetric with respect to CI , therefor AC  is tangent
to ω .

 

4.  Consider the circles Ω = ( , )O R  and ω 2 2= ( , )I r , which are the circumcircle and the excircle
of some triangle. From problem 2 it yields that I O R R r2

2 2
22= + ⋅ .  Take any point B  in Ω

and let the lines BA  and BC  be tangents to ω 2  (fig. 4). As the triangles BI C2 ′  and ′B CB0 0



are similar B C R r BI0 2 22/ /= , i.e. 2 2 2 0R r BI B C⋅ = ⋅ , but by Euler formula the degree of
point I2  with respect to Ω  is equal to 2 2 2 2 0R r BI I B⋅ = ⋅ . So, BI B C BI I B2 0 2 2 0⋅ = ⋅ . This
follows that the triangle B CI0 2  is isoscelles and ∠ = ∠B I C I CB0 2 2 0 , but
∠ + ∠ = ∠ = ∠B IC I CB BB C A0 2 0 , i.e ∠ = ∠I CB A2 0 2/ . We obnain that
∠ = ∠ + ∠ = ∠ + ∠I CA A B CA A B2 02 2/ ( ) / . It means that the line I C2  is the external bisector
of angle B , therefor AC  is tangent to ω 2 .

 

5.  Firstly prove that the orthocentric axe is the radical axe of the circumcircle and the nine point
circle. Consider two circles: ΩB  with diameter AC  and ω B  with diameter HB  (fig. 5). The
sideline H H1 3  of orthotriangle is its common chord so lies in its radical axe. Therefor
′ ⋅ ′ = ′ ⋅ ′H H H H H A H C2 3 2 1 2 2 . Now consider the circumcircle Ω  and the nine point circle ω 0 .

The degrees of point ′H2  with respect to Ω  and ω 0  are equal to ′ ⋅ ′H A H C2 2  and
′ ⋅ ′H H H H2 3 2 1  respectively, i.e the degrees of the common point of respective sidelines of the

triangle and its orthotriangle with respect to Ω  and ω 0  are equal. This follows that the ortho-
centric axe is the radical axe of the circumcircle and nine point circle so it is perpendicular to
the Euler line.

 Consider now the triangle I I I1 2 3  formed by three excenters. Original triangle ABC  is its or-
thotriangle, and the point I  is its orthocenter. So the common points of external bisectors of
the triangle ABC  with respecive sidelines lie in the orthocentric axe of the triangle I I I1 2 3  i.e
in the line perpendicular to the Euler line of this triangle. But the Euler line of the triangle
I I I1 2 3  pass through its orthocenter ( )I  and nine point center ( )O , therefof it coincide with
the line IO .

6. Firstly consider next problem: given two circles ω1 1 1= ( , )O R  and ω 2 2 2= ( , )O R , their radi-
cal axe and center line intersect in the point P  (fig. 6). Find the lenght of the segment PO1 .
As the degrees of  P  with respect to both circles are equal,  PO R PO R1
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through the radius of the circles and the distance O1O2..

 Now take the circumcircle of the triangle ABC with radius R as ω1 , and the circle ( )I I I1 2 3

with radius 2R  as ω 2 . Then the distance d1  from the circumcenter O  to radical axe ( )l  is
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7. The solution is analogously to the solution of the problem 5 with replacing of the triangle
I I I1 2 3  to the triangles II I2 3 , I II1 3 , I I I1 2 . The circumcircle ( )Ω  is the common nine-point
circle of  аll these triangles and the lines I Ok  are the Euler lines of respective triangles. So
the internal bisecors axis of the triangle ABC  are the the radical axis of  Ω  and the cir-
cumcircles of the respective triangles.



8. Let Ω  and ω2  be the circumcircle and the excircle of the triangle ABC  (fig. 8). Let D be
the touching point of its common external tangent with Ω . There are two limit “triangles”
in the family of triangles with Ω  and ω2  as the circumcircle and the excircle. Consider a
case when the secant AB  becomes tangent. This will be the common external tangent to
Ω  and ω2 . Then the points A  and B  coincide in the point D , and the lines BC  and AC
coincide in the tangent PD .
Consider now the circles Ω  and ω2 , such that the tangent to ω2  in its common point P

passes through the point D . Then DK r R OI2
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DP  of circle Ω  is equal to DP R DPK= ⋅ ∠2 sin( ) . But as DP  and DK  are the tangents
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2R r DK r⋅ = + . Using the expression for

DK 2  we obtain the Euler formula I O R Rr2
2 2

22= + .

9. As the circles Ω  and ω  are fixed, and by problem 6 the distance from the center of ω  to
the external bisectors axe can be expressed through the radius of these circles, we obtain
that all feet of external bisectors lies in the fixed line.
Inversely. Let A2 be an arbitrary point of this line. Let B  and C  be the common points of
tangent to ω  passing through A2  with Ω . By Poncelet theorem the sideline BC  generate
the triangle ABC  which have A2  as the foot of the external bisector.

10. As the circles Ω  and ω1  are fixed, and by problem 8 the internal bisectors axe l1  passes
through the touching points of of common external tangents of these circles, l1  is the fixed
line.
Inversely. Let 1B  be an arbitrary point in the segment PQ . Let A and C  be the common
points of tangent to ω1  passing through B1  with Ω . By external Poncelet theorem the
sideline AC  generate the triangle ABC  which have B1  as the foot of the internal bisector.

11. Let be R r= 2 . By problem 8 this is eqivalent that the common external tangents to Ω  and
ω2  are parallel to the line OI2 . So DE  is the diameter of the circumcenter i.e. O A C∈ 1 1 .

12.   Let ′ω  be the circle with IB ′0  as a diameter. Let ′′ω  be the circle with II2  as a diameter
(fig.12). The line ′B B0 2  is the radical axe of ′ω  and Ω . The line CB2  is the radical axe of
′′ω  and Ω . So the line IB2  is the radical axe of ′ω  and ′′ω . Let K  be the second common

point of these circles. As ∠ ′ = ∠ = °IKB IKI0 2 90 , the point K  lies in the line ′B I0 2 , and
therefor ′ ⊥B I B I0 2 2 .


