
Invariants of polygons

The project is proposed by M.Prasolov, M. Skopenkov and B.Frenkin

ANNOUNCEMENT

I. DISSECTIONS OF A TRIANGLE.

Definition. Two similar triangles in a plane are called oriented oppositely if one of them includes angles α, β, γ
clockwise, and another one counterclockwise (Fig. 1, angles α, β, γ are supposed to be mutually unequal).
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Fig. 1.

Problem A. A cake is of triangular shape. The box for the cake has shape of a triangle equal to the given one but
oriented oppositely. Is it always possible to dissect the cake into two parts such that they can be put into the box
without flipping?

Problem B. Is it valid that any triangle can be dissected into triangles similar to it but oriented oppositely?

Denote the angles of the triangles in the above problems as α, β and γ. The most interesting in these problems are
the specific instances of dissections. For example, in the cases α = 90◦, α = 2β or α = 3β the cake in Problem A can
be dissected. (Dissect it!).

Call the numbers α, β and γ commensurable if kα + lβ + mγ = 0 for some integers k, l and m, not vanishing
simultaneously. The main purpose in the first part of the project is to prove the following statement:

Statement I. If α, β and γ are incommensurable then the cake in Problem A and the triangle in Problem B cannot
be dissected.

II. DISSECTIONS OF A RECTANGLE.

Problem C. (HILBERT’S THIRD PROBLEM) Prove that a regular tetrahedron cannot be dissected into a
finite number of polyhedrons which can be combined into a cube.

Problem D. A room is of rectangular shape with side ratio x. The floor of the room is covered by rectangular tiles
with the same side ratio. Furthermore, some tile is oriented crosswise, not lengthwise (Fig. 2). Prove that x is a root
of a polynomial with integer coefficients.
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x

Fig. 2.

Surprisingly, Hilbert’s third problem can be solved by considering dissections of rectangles only, not of polyhedrons!
In the problems following the preliminary finish, a new version of elementary solution of Hilbert’s third problem is
proposed which is based on this idea.

As regards Problem D, it occurs to be possible to solve it by means of... physical interpretation! Specifically, to every
dissection of a rectangle we attach a circuit formed of resistors.

All the problems concerned admit a common approach based on using of invariants of polygons.
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I. DISSECTIONS OF A TRIANGLE.

Constructions

1. Dissect the cakes of the indicated form (Fig.3) into two parts in the described mode:
(a) α = 90◦; (b) α = 3β; (c) α = 2β < 90◦; (d) α = 2β > 90◦; (e)* α = 30◦, β = 20◦, γ = 130◦;
(f)* α = n+1

n
β, n integer. (g) Dissect an arbitrary cake into 3 parts in the described mode.
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Fig. 3.

2. Dissect a triangle having angles α, β, γ into n triangles similar to it:
(a) α = 90◦, n = 2; (b) α = 30◦, β = 30◦, γ = 120◦, n = 5; (c) α, β, γ arbitrary, n ≥ 4, n 6= 5.

3. Let α, β, γ be distinct and different from 90◦. Then the triangle from Problem B cannot be dissected into:
(a) 2 parts; (b) 3 parts; (c) 4 parts.

Invariants.

Let M be an arbitrary polygon. At each its side, let an arrow mark the direction such that points close to this
side from the left belong to the polygon, and those from the right do not (Fig. 4). Now choose some directed line l,
that is, a line and a direction on it marked by an arrow.

Let Jl(M) denote the algebraic sum of lengths for all sides of M parallel to l, such that those sides having the
same direction as l (sides AB, DE and FG at Fig. 5), are taken with + sign, and those having the opposite direction
(side KL at Fig. 5) are taken with − sign. If M has no sides parallel to l, we set Jl(M) = 0. The number Jl(M) is
called the additive invariant.

Fig. 4. Fig. 5.

4. (a) Describe all convex polygons M such that Jl(M) = 0 for any directed line l.
(b) A polygon M is dissected into several polygons M1, . . . ,Mk. Then Jl(M) = Jl(M1) + · · · + Jl(Mk).
(c) A polygon M is dissected into several polygons, and they were combined to form a new polygon M ′ using only
parallel translations of the parts. Then Jl(M) = Jl(M

′).
(d) A convex polygon M is dissected into several polygons, and they were combined to form a square using only
parallel translations of the parts. Then M is central symmetrical.

Let φ be some angle. Let Jl,φ(M) denote the sum of Jl′(M) for all distinct lines l′ obtained from some directed
line l by rotations through angles divisible by φ (divisibility is up to 2π). The expression Jl,φ(M) makes sense since
only a finite number of terms does not equal zero in this sum.
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5.(a) A polygon M is dissected into several polygons, and theys are combined to form a polygon M ′ by rotating each
part through some angle divisible by φ. Then Jl,φ(M) = Jl,φ(M ′).
(b) Given l and φ, describe all triangles M such that Jl,φ(M) = 0.
(c) Let an angle φ be incommensurable with π. Let M and M ′ be two equal non-isosceles triangles such that for any
directed line l we have Jl,φ(M) = Jl,φ(M ′). Then the sides of these triangles can be numbered so that the angles
between sides with equal numbers are divisible by φ.
(d) Let the cake from Problem A be dissected into two parts which are packed into a box, being rotated: one part
through some angle φ, and another part through some angle ψ. Suppose the angle φ− ψ is incommensurable with π.
Prove that the angles 2(α− β), 2(β − γ) and 2(γ − α) are divisible by φ− ψ.
(e)* Prove Statement I for Problem A.

To every directed line XY in the plane, attach a number f(XY ) so that it changes sign when the direction of the
line is changed: f(XY ) = −f(Y X). Let M = X1X2 . . . Xn be an arbitrary polygon whose vertices are numbered
counterclockwise. Set

Jf (M) = f(X1X2)|X1X2| + f(X2X3)|X2X3| + · · · + f(XnX1)|XnX1|,

where |X1X2|, |X2X3|, . . . , |XnX1| are side lengths of the polygon, and X1X2, X2X3, . . . , XnX1 are the corresponding
directed lines.

6. (a) A polygon M is dissected into several polygons M1, . . . ,Mn. Then Jf (M) = Jf (M1) + · · · + Jf (Mn).
(b) Let triangle ABC be dissected into triangles AiBiCi similar to it and oriented oppositely. Prove that for any i
the angle between directed lines AiBi and AB can be represented in the form kα+ lβ+mγ, where k, l,m are integers.
(c) Suppose the angles of triangle ABC are incommensurable. Construct a function f(XY ) such that Jf (ABC) 6= 0
but Jf (AiBiCi) = 0 for any triangle AiBiCi similar to ABC and oriented oppositely.
(d) Prove Statement I for Problem B.
(e)* Does there exist a non-right non-isosceles triangle which can be dissected into triangles similar to it but oriented
oppositely?

7. Is it possible to dissect a circle into a finite number parts by segments and arcs so that the parts can form a square?
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II. DISSECTIONS OF A RECTANGLE.

Constructions.

8. Dissect a cube into 6 equal tetrahedrons.

9. Tile as required in Problem D the rooms with the following side ratio:
(a) x =

√
2; (b) x =

√

p/q, p and q integer; (c) x = 4
√

2; (d)* x =
√
r where r is a periodic continued fraction;

(e)* x =
√
s where s is a root of a cubic polynomial with integer coefficients having no rational roots;

(It is asked to construct such a tiling only for a single value of s, not for any s satisfying this property.)
(f) Tile an arbitrary room by n bars oriened lengthwise, for n ≥ 4, n 6= 5.

Hilbert’s Third Problem: reduction to a planimetric problem.

Let M be a polyhedron. Let l1, l2, . . . , ln be lengths of its edges, α1, α2, . . . , αn be dihedral angles between the
corresponding edges. Attach to M a set of rectangles li × αi in a plane, such that sides li are horizontal and sides αi

are vertical (Fig. 6).
Call two such sets rectangular-scissor-congruent (�-scissor-congruent) if each rectangular from some set can be

dissected into several rectangles which can be combined to form the other set using only parallel translations of parts
(Fig. 7). Two polyhedrons are scissor-congruent if some of them can be dissected into several polyhedrons which can
be combined to form the other polyhedron.
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Fig. 6. Fig. 7.

Lemma I. If two polyhedrons are scissor-congruent then the corresponding sets of rectangles become �-scissor-
congruent after adding appropriate rectangles of the form l × π.

The proof of this lemma is contained in Problem 10.
Suppose a convex polyhedron M is dissected into polyhedrons M1,M2, . . . ,Mk.

10. (a) Let e be an edge of a plyhedrons M , l is its length, and α is the dihedral angle at this edge. Denote by
l1, l2, . . . ln the lengths of the edges in Mi, belonging to e, and by α1, α2, . . . , αn the dihedral angles at the corresponding
edges. Then the rectangle l× α can be dissected into n rectangles l1 × α1, . . . , ln × αn.
(b) Let ℓ be a line in the space not containing the edges of a polyhedron M . Denote by l1, l2, . . . ln the lengths of the
edges in polyhedrons Mi, belonging to ℓ, and by α1, α2, . . . , αn the dihedral angles at the corresponding edges. Then
the set of n rectangles l1 × α1, . . . , ln × αn is �-scissor-congruent to some rectangle of the form l× π.
(c) Prove Lemma I.
(d) Prove that the dihedral angle θ at an edge of the regular tetrahedron is incommensurable with π.

Hilbert’s Third Problem: solution of the planimetric problem.

Lemma II. If θ and π are incommensurable, then rectangles a × θ and b × π are not �-scissor-congruent for any a
and b. Moreover they remain not �-scissor-congruent after adding any rectangles of the form l × π.

The proof of this lemma is contained in Problem 11.
Let some set of rectangles be given. We may obtain a new set by dissecting one of the given rectangles into two

rectangles. This operation is called an elementary transformation of the set.

11. (a) Two sets of rectangles are �-scissor-congruent then one of them can be obtained from the other one by a
sequence of elementary and inverse to them transformations.

Assume that θ and π are incommensurable. Suppose that the rectangle b× π is obtained from the rectangle a× θ
by a sequence of elementary and inverse to them transformations. Let θ, π, y1, y2, y3, . . . , yN be the lengths of vertical
sides of all the rectangles occuring in this sequence of transfornations. Set Y = {θ, π, y1, . . . , yN}.
(b) There exist numbers y′1, y

′

2, . . . , y
′

n ⊂ Y such that any number y ∈ Y is uniquely represented in the form y =
pθ + qπ + p1y

′

1 + p2y
′

2 + · · · + pny
′

n with rational p, q, p1, p2, . . . , pn.

Fix some set of such numbers y′1, . . . , y
′

n. For y ∈ Y set f(y) = p, where p is the coefficient in the representation
y = pθ + qπ + p1y

′

1 + · · · + pny
′

n. If M is the set of rectangles x1 × y1, x2 × y2, . . . , xn × yn where all yi ∈ Y then put

J(M) = x1f(y1) + x2f(y2) + · · · + xnf(yn).

(c) The value of J(M) is invariant under an elementary transformation of the set M .
(d) Prove Lemma II.
(e) Prove Dehn’s theorem: regular tetrahedron and cube are not scissor-congruent.

12. (a) Prove another Dehn’s theorem: if a rectangle a× b is dissected into squares then a
b

is rational.
(b) Prove that a regular tetrahedron cannot be dissected into several (more than 1) regular tetrahedrons.
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Dissections of a rectangle and electrical circuits.

To a dissection of a rectangle into rectangles we can attach an electrical circuit as shown at Fig. 8. To every
rectangle there corresponds a resistor, and to every vertical line in the dissection (as well as to every vertical side of
the original rectangle) there corresponds a node where several resistors connect. The resistance of every resistor equals
the ratio of the horizontal side of the corresponding rectangle and the vertical one. It can be shown that the total
resistance of the circuit equals the ratio of sides of the initial triangle.

R3

R4 R5

R2

R1
5

4

2
3

1

R4

R3

R2R1

••••• •

Fig. 8. Fig. 9.

Let us show how to find the total resistance of an electrical circuit.
Consider an electrical circuit consisting of resistors. Let the resistance Rk be given for each resistor. Fix the

beginning and the end of the circuit, and a real number U > 0 (voltage of the circuit). To each node we are going to
assign a real number Ui called the voltage at the node as follows. For the beginning of the circuit we define the voltage
to be equal to zero, and for the end of the circuit we define it to be equal to U . Choose the voltages at the remaining

nodes in such a way that the sum of the values (∆Uk)2

Rk
over all the resistors is minimal, where ∆Uk is the difference

between the voltages at the ends of the k-th resistor. Denote this sum by P , it is called the total calorification.

The total resistance is R = U2

P
.

Further it is allowed to use that the distribution of the voltages with the minimal calorification exists.

Example 1. Consider a circuit consisting of two parallel resistors R1 and R2. By definition P = U2

R1
+ U2

R2
and the

total resistance is R = U2

P
= R1·R2

R1+R2
.

Example 2. Consider a circuit consisting of two subsequent resistors R1 and R2. Let U1 be the voltage at their

common node. The value
U2

1

R1
+ (U−U1)2

R2
should be minimal possible. This is a quadratic function with respect to U1.

Evaluating U1 = U

R2( 1
R1

+ 1
R2

)
we get R = R1 +R2.

An elementary transformation of an electrical circuit is one of the following operations:
1) replacing a resistor of resistance R1·R2

R1+R2
by two parallel resistors of resistances R1 and R2;

2) replacing a resistor of resistance R1 +R2 by two subsequent resistors of resistances R1 and R2;
3) joining two nodes with the same voltage.

13. Find the total resistance and corresponding rectangle dissections for the following circuits:
(a) the circuit in Fig. 8 for R1 = R2 = R3 = R4 = R5; (b) the circuit in Fig. 9.

14. (a) Suppose a square is dissected into squares and rectangles with the ratio of the horizontal and the vertical
sides equal to R. Then the corresponding electrical circuit consists of resistors with resistance 1 and R and has total
resistance 1.
(b)* A circuit consists of resistors with resistance 1 or R. Prove that the total resistance of the circuit can be expressed

as P (R)
Q(R) where P (x) and Q(x) are polynomials with integer coefficients.

(c) Suppose that the voltages at the two nodes connected with a resistor of resistance R are distinct. Prove that the
total resistance of the circuit increases if R increases.
(d) Solve Problem D.

Remark.

The current strength at a resistor Ik = ∆Uk

Rk
, where ∆Uk is the difference between the voltages of the two nodes

connected with the resistor. Let us show that the sum of the current strengths at all the resistors having a common
node (distinct from the beginning and the end of the circuit) equals zero. Fix such a node. Renumber the nodes so
that this node is first, and the resistances of the resistors connected with this node are R1, R2, . . . , Rn. Let us see how

the total resistance of the circuit depends on U1. The total calorification is
n
∑

i=1

(Ui−U1)2

Ri
+ C, where C is a constant

not depending on U1. The minimum attends at the vertex of the parabola, so U1 =

n
∑

i=1

Ui

Ri

n
∑

i=1

1
Ri

, which is equivalent to

n
∑

i=1

Ui−U1

Ri
= 0.

Our definition imply also the Kirchgoff laws:
1) the sum of current strengths at all the resistors having a common node (distinct from the beginning and the

end of the circuit) equals zero;
2) I1R1 + I2R2 + · · ·+ InRn = U for any path 1, 2, . . . , n going from the beginning of the circuit to the end, where

U is the total voltage not depending on the path.
Vice versa, the Kirchgoff laws imply that the current strength distribute so that the total calorification is minimal.
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SOLUTIONS: PART I.

1a. Dissect the triangle by the median from the vertex of the right angle (Fig. 10a).
1b. Dissect the triangle by the line which divides the angle α as 2 : 1 (Fig. 10b).
1c. Dissect the triangle by the line which separates angle of size β from the angle γ (Fig. 10c).
1d. Dissect the triangle by the line symmetrical to the side opposite to γ relative the bisector of this angle (Fig. 10d).
1e. First method. Take an open polygon ABCDE with 4 equal edges and equal angles 130◦ between them. Extend the edges
AB, BC and DE. Denote by BFG the triangle formed by these lines. Then the angles of triangle BFG are equal to 30◦, 20◦

and 130◦. Thus we constructed the required dissection of the triangle: dissect triangle BFG by open polygon BCD.
Second method. Let δ = 10◦. Take an open polygon ABCDEF with 5 equal edges and equal angles 180◦ − δ between them.
Connecting its endpoints A and F we obtain a symmetrical hexagon with angles A = F = 2δ. Construct triangle AFG with
angles GAF = 2δ and GFA = 3δ such that edge AB lies on AG. Hexagon BCDEFG is symmetrical as well because angles
B and F are equal to δ. Thus we have obtained the required dissection since the angles of triangle AFG are equal to 30◦, 20◦

and 130◦ respectively: dissect triangle AFG by open polygon ABCDEF .
Third method. (Fig. 10e) Dissect triangle ABC by open polygon KLMN with 3 edges where K ∈ BC, N ∈ AB, BK = KL =
LM = MN = NA, ∠BKL = ∠LMN = π − α, ∠KLM = ∠MNA = π − β.
1f. Dissection is constructed similarly to the second or third method in the solution of Problem 1e.
1g. Dissect the triangle by three perpendiculars from the incenter to the sides of the triangle.

β
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γ

2β

β
2β

β 2β

β

2β β

a b c

2β

β2β β
N

M
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K

C

AB
d e

Fig. 10.

2a. Draw the altitude from the vertex of the right angle.
2b. Draw slits from the vertex of the angle equal to 120◦, having angle 30◦ with its sides. Then dissect the obtained regular
triangle connecting its center with its vertices.
2c. For n ≥ 4 even, divide some side of the triangle (demote it by a) into n/2 equal parts. Through the dividing points, draw
various segments parallel to the remaining sides of the triangle, up to the nearest meet with itself or with another side of the
triangle. It is easily seen that all obtained points of meet belong to the same line parallel to a. Draw this line to obtain the
required dissection.
For n ≥ 7 odd, dissect the triangle by the above method into n− 3 parts, then dissect one of the obtained triangles into 4 parts
by the same method (i.e., draw midlines).
Remark. A natural question arises: what is the situation for n = 5? It turns out that examples in Problems 2a and 2b exhaust
triangles allowing dissection into 5 triangles similar to the original one. The proof of this nice fact will be published in one of
the next few issues of the journal ”Kvant”.
3a. A slit has to connect some vertex of the triangle with a point at the opposite side. If the angles to this point are not equal
then their sum is < π, since they are equal to two angles of the original triangle. Hence the angles are equal and thus are right.
By the way, we have established a simple but useful fact which will be used in the rest of this problem.
Fact 1. If some node of the dissection has only two adjacent small triangles then the original triangle is in fact right. If such a
situation occurs, we say for brevity that ”we have obtained rectangularity”.
3b. Let a triangle be dissected into three triangles similar to it. The smallest of its angles cannot be dissected. The small
triangle including this angle has all its vertices at the sides of the original triangle. Either one or two of these vertices coincide
with the vertices of the original triangle. In the first case, the remaining part is a convex quadrangle, and in the second
case, a triangle. In both cases, an easy examination of cases shows that the subsequent dissection into two triangles yields
rectangularity.
We have established a new useful fact.
Fact 2. Let the original triangle have angles α ≤ β ≤ γ . Then the angle α may not be dissected. Each vertex of the small
triangle containing it belongs to the boundary of the original triangle. We will call this small triangle α-triangle.
3c. Suppose a triangle is dissected into 4 triangles similar to it but oriented oppositely. Consider the segment separated by the
α-triangle.
Suppose this segment dissects the triangle into the α-triangle and a quadrangle. Then the endpoints of this segment belong to
some other slits, for otherwise we have rectangularity. To obtain just 4 small triangles, we need 2 such slits having a common
point at the side opposite to the angle α. Note that in the obtained layout for dissection, angles of all the small triangles are
uniquely determined. Indeed, the condition of opposite orientation determines all angles of three triangles containing the angles
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of the original triangle. Then the angles of the ”central” triangle are uniquely determined: they equal to π − 2α, π − 2β and
π − 2γ. Order the angles of the original triangle: α ≤ β ≤ γ. Then π − 2α ≥ π − 2β ≥ π − 2γ. Thus π − 2α = γ. Hence
β = π − α− γ = α. Thus we see that the original triangle is isosceles, contrary to our assumption.
Now assume that the remaining part is a triangle. Order the angles of the original triangle: α ≤ β ≤ γ, denote by A, B, C
the corresponding vertices. Denote by D the vertex of the angle γ in the α-triangle. If some angle of the triangle BCD is not
dissected then we obviously obtain rectangularity. So all three its vertices are connected with some point O inside the triangle.
Clearly, ∠ABC > ∠OBC and thus ∠OBC = α. Now the orientation condition implies ∠OCB = γ = ∠ACB, a contradiction.
4a. Polygon M has to be central symmetrical. In fact, a convex polygon can have not more than two sides parallel to the
direction l. Thus if Jl(M) = 0 for any directed line l then the sides of M divide into pairs of equal and parallel sides. Suppose
M = A1A2 . . . A2n. Its convexity implies that the only possible case is A1A2 ‖ An+1An+2, A2A3 ‖ An+2An+3, . . . , AnAn+1 ‖
A2nA1. Hence

−−−→
A1Ak = −−−−−−−−→

An+1An+k for each k = 2, 3, . . . , n. Thus the midpoint of the segment A1An+1 is the center of
symmetry for M .
4b. We present the proof from [1].
Consider all segments which are sides of M,M1,M2, . . . ,Mk. Mark all points on them which are vertices of M,M1,M2, . . . ,Mk.
Then we obtain a finite number of smaller segments which we will call links. Each side of each polygon M,M1,M2, . . . ,Mk

consists of one or more links. Fig. 11 shows a dissection of a polygon into smaller parts. Side consists of three links AM , MN ,
NB; side NP of the shaded polygon in the figure consists of three links as well.
Note that in calculating the invariant Jl(M) of the polygon M (or of any polygon M1,M2, . . . ,Mk) we may use the algebraic
sum of links parallel to l, instead of sides, since the length of each side equals the sum of length of links contained in it. So
for calculating the sum in the right side of the relation in Problem 4b, we have to form the algebraic sum of lengths of all links
parallel to l and counted over all polygons M1,M2, . . . ,Mk.
Consider a link which is entirely (excluding endpoints, possibly) situated inside M (link EF at Fig. 11). Then it is adjacent for
two polygons among M1,M2, . . . ,Mk which adjoin the link from opposite sides (right and left). So in calculating the invariant
of one of these polygons, the link will take plus sign, and for the other polygon it will take minus sign, so that in the total
algebraic sum these two links cancel. We see that in calculating of the right-hand side in the relation from Problem 4b, we may
ignore links situated inside M .
Now consider a link which belongs to the outline of M and is parallel to the line l (link AM at Fig. 11). To this link, there
adjoins only one of polygons M1,M2, . . . ,Mk, and from the same side as M . Hence this link has the same sign in the sum
Jl(M1) + Jl(M2) + · · · + Jl(Mk) as in the invariant Jl(M).
Thus the right-hand side of the relation in Problem 4b equals Jl(M), and our assertion is proven.

Fig. 11.

4c. Suppose a polygon M ′ is dissected into polygons M1,M2, . . . ,Mk which are combined into a polygon M ′ using only parallel
shifts of parts. Note that the values of Jl(Mi) are invariant under shifts of Mi. Thus the result of Problem 4b implies

Jl(M) = Jl(M1) + · · · + Jl(Mk) = Jl(M),

as required.
4d. For any square M ′ and any directed line l we have Jl(M

′) = 0. Hence by Problem 4c, Jl(M) = Jl(M
′) = 0. Then by

Problem 4a the polygon M is central symmetrical.
5a. Follows from 4b.
5b. If the angle nπ is divisible by φ for some odd n then obviously Jl,φ(M) = 0. In the sequel suppose that nπ is not divisible by
φ for any odd n. Clearly, if no angle between l and the sides of triangle M is divisible by φ then Jl,φ(M) = 0. Suppose now that
Jl,φ(M) = 0, and the angle between some side AB and the line l is divisible by φ. Then side AB has nonzero contribution to
Jl,φ(M). Hence its contribution has to cancel with contributions of the remaining sides. Consequently, the triangle has another
side, say BC, whose angle with l is divisible by φ. All three sides cannot be in use because AB ± BC ± CA 6= 0 by triangle
inequality. Hence the triangle is isosceles, AB = BC, and ∠B = nφ for some integer n. Conversely, for any such triangle we
have Jl,φ(M) = 0, provided the angle between AB and l is divisible by φ and the angle between AC and l is not. These are all
the possible cases.
5c. Consider a directed line l containing some side s. Then Jl,φ(M) 6= 0 by Problem 5b. Thus Jl,φ(M ′) 6= 0. Hence there exists
a side s′ of triangle M ′ such that the angle between s and s′ is divisible by φ. This implies what is required.

5d. We may assume ψ = 0. The result of Problem 5a implies that two triangles M and M ′, the cake and the box, must
have the same invariant Jl,φ(M) for any directed line l. From Problem 5c we see that the sides of triangles M and M ′ can be
enumerated so that the angle between sides with the same numbers are divisible by φ. For instance, let the corresponding sides
of triangles M and M ′ have the same number. Denote by α1, α2, α3, α

′
1, α

′
2, α

′
3 the angle between these sides and some fixed
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line. Then αi − α′
i = kiφ for some integer ki and i = 1, 2, 3. On the other hand, αi − αi+1 = α′

i+1 − α′
i for i = 1, 2, 3, where we

set α4 = α1 by definition. The resulting system of 6 linear equations easily leads to the required consequence. In particular,
there exist integers k, l,m such that some of them is not zero and k(α1 − α2) + l(α2 − α3) +m(α3 − α1) = 0.

5e. Proof of Statement I for Problem A. It suffices to consider the case of a non-isosceles triangle. We may assume that
while packing the parts into the box, one of them remains fixed, and the other one is joined to it being rotated through an angle
φ around some point O. Two cases are possible.
(1) The angle φ is incommensurable with π. Then the result of Problem 5 implies our assertion.
(2) The angle φ is commensurable with π.
For any directed line l, denote by L the set of lines obtained from l by rotations around point O through angles divisible by
φ. On the set of directed lines, introduce the following function f : f(XY ) = 1 if XY ∈ L, f(XY ) = −1 if Y X ∈ L, and
f(XY ) = 0 otherwise.
First let the point O be distinct from the vertices of the triangle M . Then there exist two sides of M , say AB and BC, not
containing the point O. For the line l containing the side AB, Jf (M) = ±|AB| (otherwise one of the angles of the triangle M
immediately is divisible by φ, thus commensurable with π. Let M ′ be the triangle obtained from M after moving the parts.
Arguing similarly to Problem 5a we obtain that Jf (M ′) = Jf (M) = ±|AB|. Thus the side of length |AB| in the triangle M ′

and the side AB of M form an angle divisible by φ. Similarly, the side of length |BC| in M ′ and the side BC of M form an
angle divisible by φ. Then using commensurability of φ and π, and arguing as in Problem 5d we obtain kα+ lβ +mγ = 0 for
some integers k, l, m, not vanishing simultaneously.
It remains to consider the case when the point O coincides with one of the vertices of the triangle M . Let us introduce one more
invariant. Let OX be some ray starting at O. For any directed segment AB, denote by JOX(AB) the length of the intersection
AB ∩ OX taken with + sign if AB has the same direction as OX, and with − sign otherwise. For any polygon P denote by
JOX,φ(P ) the sum of values JOY (AB), where AB runs over all directed sides of P , and OY runs over all rays obtained from OX
by rotations through angles divisible by φ. Then the given invariant is not zero for the sides of the triangle M containing O.
Arguing as in Problem 5d we get the required relation kα+ lβ+mγ = 0 for some integers k, l, m, not vanishing simultaneously.

6a. The proof is similar to the solution of Problem 4b.
6b. Any triangle AiBiCi can be connected with side AB by a chain of triangles A1B1C1, A2B2C2, . . . , AiBiCi such that
consecutive triangles have a common part of the boundary, and A1B1 is contained in AB. Hence it suffices to prove that if
some side of triangle AjBjCj and the line AB form an angle of the form kα + lβ + mγ then this is true for two other sides.
The latter statement is obvious.
6c. Problem 6b suggests that the revealing function f is to be some function in k, l and m.
Thus let f(XY ) = f(k, l,m) where integers k, l,m are such that the angle between directed linesXY and AB equals kα+lβ+mγ.
By definition, the angle between directed lines XY and AB is the angle of the rotation which maps AB into XY as directed
lines. The angle between directed lines is determined up to 2π. Hence integers k + 2, l + 2, m + 2 define the same angle as
k, l, m. Thus we obtain a condition for our function: f(k + 2, l + 2,m + 2) = f(k, l,m). Since α, β, γ are incommensurable,
integers k, l,m are uniquely determined by directed line XY up to substitution k, l,m→ k+2, l+2, m+2. Hence any function
subject to f(k + 2, l+ 2,m+ 2) = f(k, l,m) correctly defines a function on the set of directed lines. (We set f(XY ) = 0 if XY
is distinct from dissecting lines.)
Now we determine the other conditions on f(k, l,m). First, f(XY ) = −f(Y X), hence

f(k + 1, l + 1,m+ 1) = −f(k, l,m). (1)

This condition also implies f(k + 2, l + 2, m+ 2) = f(k, l,m).
Consider now the condition Jf (AiBiCi) = 0. Suppose the vertices of triangle ABC are situated in the above order clockwise,
and the vertices of triangle AiBiCi counterclockwise. Let the angle between directed lines AiBi and AB be equal to kα+ lβ +
mγ. Then the angle between lines AiCi and AB equals (k − 1)α + lβ + mγ, and the angle between lines CiBi AB equals
kα+ (l + 1)β +mγ. Hence

Jf (AiBiCi) = f(k, l,m)|AiBi| − f(k, l + 1,m)|BiCi| − f(k − 1, l,m)|CiAi|.

Since triangles AiBiCi and ABC are similar, the condition Jf (AiBiCi) = 0 may be rewritten in the form

f(k, l,m)|AB| − f(k, l + 1,m)|BC| − f(k − 1, l,m)|CA| = 0. (2)

The same argument shows that the condition Jf (ABC) 6= 0 may be rewritten in the form

f(0, 0, 0)|AB| − f(0,−1, 0)|BC| − f(1, 0, 0)|CA| 6= 0. (3)

Thus it suffices to find a function f(k, l,m) satisfying (1)–(3). Note that the second relation determines some restrictions on
f(k, l,m) for m fixed. Thus it suffices to define the function for m = 0, and then the first relation will determine it for all other
m. In view of utter arbitrariness, put f(k, 0, 0) = 1 for all k. Then f(k, 1, 0) = (|CA| − |AB|)/|BC| for all k. Furthermore we
may assume f(k, l, 0) = ((|CA| − |AB|)/|BC|)l, and correction for the first relation gives

f(k, l,m) = (−1)m ·
(

|CA| − |AB|
|BC|

)l−m

.

For this function f(k, l,m) relations (1)–(3) are verified immediately.

6d. Proof of Statement I for Problem B. Straightforward from Problems 6a and 6c.
6e. The answer is unknown to the authors.
7. To any curvilinear polygon M , attach an integer J(M) equal to the length sum of boundary arcs such that the polygon
adjoins them from the ”concave” side, minus the length sum of arcs such that the polygon adjoins them from the ”convex”
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side. It is easy to check that J(M) has equal values for two polygons such that one of them is obtained from the other one but
dissection by segments and arcs and combining the obtained parts. On the other hand, a circle has J(M) 6= 0, and a square
has J(M) = 0.

SOLUTIONS: PART II.

8. Geometric solution. The cube ABCDA′B′C′D′ can be dissected into 6 tetrahedrons AC′BB′, AC′B′A′, AC′A′D′, AC′D′D,
AC′DC, AC′CB by six planes passing through the pair of the opposite vertices A,C′ and one of the remaining vertices of the
cube. The congruence of the tetrahedrons follows from symmetry (for instance, tetrahedron AC′BB′ maps onto tetrahedron
AC′A′D′ under rotation of the cube through 120◦ around the line AC′).
Algebraic solution. The cube 0 6 x, y, z 6 1 can be dissected into 6 tetrahedrons 0 6 x 6 y 6 z 6 1, 0 6 x 6 z 6 y 6 1,
0 6 y 6 x 6 z 6 1, 0 6 y 6 z 6 x 6 1, 0 6 z 6 x 6 y 6 1, 0 6 z 6 y 6 x 6 1.
9a. Draw the line joining the midpoints of two long sides of the rectangle.
9b. Divide two long sides of the rectangle into q equal parts, and two short sides into p equal parts. Through the corresponding
division points, draw lines parallel to the sides of the rectangle.
9c. Let a rectangle 1 × x, x = 4

√
2 be given. Cut off a rectangle 1 × 1

x
. From the obtained strip 1 × (x − 1

x
), cut off two

rectangles (x2 −1)× (x− 1
x
). From the strip (3−2x2)× (x− 1

x
), cut off a rectangle (3−2x2)× ( 3

x
−2x). The obtained rectangle

(3 − 2x2) × (3x− 4
x
) has side ratio equal to x as well since x4 = 2.

9d. Let

r = a1 +
1

a2 +
1

a3 +
1

a4 + . . .

is a periodic continuous fraction. Since the sequence ak is periodic, for some n we have

r = a1 +
1

a2 + . . .
1

a2n +
1

r

.

Starting from this equality, we easily construct a dissection of the rectangle 1 × r into several squares and a single rectangle
with side ratio r. In fact, cut off a1 squares 1 × 1 first. We obtain the strip 1 × (r − a1) with side ratio

1

r − a1
= a2 +

1

a3 + . . .
1

a2n +
1

r

.

Now cut off a2 squares (r − a1) × (r − a1) etc. Proceeding in such a way, we obtain a rectangle with side ratio r.
The constructed dissection of the rectangle 1 × r leads easily to the required dissection of the rectangle 1 ×√

r: contract the
rectangle 1 × r in

√
r times along side r.

9e. The rectangle with side ratio a is dissected into 3 vertical strips. First strip includes top-down rectangles with side ratio
a, 1

a
; the second one, respectively: a, a, 1

a
; the third one: a, 1

a
, 1

a
. In fact,

1

a+ 1
a

+ 1
1
a

+ 1
a

+a
+ 1

1
a

+a+a
= a;

(a2 + 1)(2a2 + 1)(a2 + 2) = (a2 + 1)(a2 + 2) + (a2 + 1)(2a2 + 1) + (2a2 + 1)(a2 + 2);
2a6 + 2a4 − 4a2 − 3 = 0.

The polynomial 2x3 + 2x2 − 4x − 3 has no rational roots. Indeed, if p

q
is a fraction in its lowest terms then p divides the

intercept, and q divides the leading coefficient. The examination of cases shows easily that ±3,±1,± 3
2
,± 1

2
are not roots of the

given polynomial.
9f. It is easy to dissect the rectangle into 4, 6 and 8 parts. Given the dissection into n parts it is easy to construct the dissection
into n+ 3 parts.
10a. Let ei be the corresponding edge of some polyhedron Mj . Consider a cylinder C having axis e and radius 1. The dihedral
angle at edge e cuts off in the cylinder surface a band L having length α and width l. In the surface of the sub-cylinder Ci

having axis ei and radius 1, the dihedral angle at edge ei cuts off a band Li having αi and length li. Since the dissection
polyhedrons are disjoint and coverM , the band L is dissected into bands L1, L2, . . . , Ln. It remains to establish the natural
correspondence between points of L and of the rectangle l × α to obtain its dissection into rectangles li × αi.
10b. Any common point of the line ℓ and of polyhedron M is either an internal point of some polyhedron Mi or belongs
to the boundary of several dissection polyhedrons. Let e1, e2, . . . , en be the edges of dissection polyhedrons belonging to the
line ℓ (and having length l1, l2, . . . , ln resp.). Let f1, f2, . . . , fm be the lengths of various intersections of ℓ with faces of Mi,
not coinciding with edges. Thus edges e1, e2, . . . , en form a family of segments on ℓ. Without loss of generality, e1, e2, . . . , es

is the set of edges belonging to such a segment I . We will prove that the set of rectangles e1 × α1, e2 × α2, . . . , es × αs � is
scissor-congruent to the rectangle l×π. Having proved this for every such segment and joining together the obtained rectangles
of width π, we get the assertion of the problem.
Let C be the surface of a cylinder having axis I and radius 1 without heads. The dihedral angles at e1, e2, . . . , en cut off from
C bands li × αi(having line length li and circle width αi). Since the polyhedrons are disjoint and cover the whole polyhedron
M , C is dissected into bands li × αi and fi × π. Extend all circular slits. Then C is dissected into rings. Remove from rings
all bands having width π (parts of redundant bands having line length fi), and dissect not changed rings into 2 bands having
circular width π. All the remaining can be combined into a band of circular width π which corresponds to the rectangle of
width π dissected into parts of rectangles l1 × α1, l2 × α2, . . . , ls × αs, obtained by shifts, vertical and horizontal slits.

9



10c. The set of rectangles corresponding to the first polyhedron, being combined with some set of rectangles having width π,
is by 10a and 10b �-scissor-congruent to the join of sets of rectangles corresponding to the dissection polyhedrons. The same
is true for the second polyhedron. But obviously the �-scissors-congruence relation is transitive and symmetrical, and we are
done.
10d. Let M be the midpoint of CD. Since AM and BM are perpendicular to CD, the value of ∠AMB equals the value
of the dihedral angle at edge CD of the tetrahedron. Suppose the length of the edge of the tetrahedron equals a, then the

formula for the altitude of the regular triangle gives AM = BM =
√

3
2
a. By cosine theorem applied to triangle AMB,

cosθ = AM2+BM2−AB2

2AMBM
= 1

3
.

Let us prove by induction that cosnθ = an

3n where an is an integer not divisible by 3. For initial values n = 0 and n = 1, the
fact is obvious.
The induction step. Formula for the sum of cosines for n > 1: cos(n + 1)θ + cos(n − 1)θ = 2cosnθcosθ, so cos(n + 1)θ =

2cosnθcosθ − cos(n− 1)θ =
2an−3an−1

3n+1 . Indeed, 2an − 3an−1 is not divisible by 3.
Hence coskθ 6= 1, then kθ 6= 2πn, i.e. θ 6= p

q
π.

11a. Suppose the first set is dissected into rectangles which are shifted are combined into the second set.Extend all the vertical
slits in the dissection of the first set and horizontal slits in the dissection of the second one. The obtained dissection can be
fulfilled by elementary dissections: first dissect the first set through all vertical slits, then dissect each vertical strip by horizontal
slits. Collect all horizontal strips in the dissection of the the second set and join them.
11b. Introduce the following operation for the set θ, π, yi1 , yi2 , . . . , yik

: remove yi with the greatest is such that pθ + qπ +
µ1yi1 + µ2yi2 + · · · + µkyik

= 0 where all coefficients are rational and µs 6= 0. Apply this operation to the initial set repeatedly
until possible. We obtain a set θ, π, yj1 , yj2 , ...yjr

. Note that for any x ∈ Y there exist rational p, q, µ1, µ2, . . . , µr such that
x = pθ+qπ+µ1yj1 +µ2yj2 +· · ·+µryjr

. Suppose p1θ+q1π+µ1yj1 +µ2yj2 +· · ·+µryjr
= x = p2θ+q2π+ξ1yj1 +ξ2yj2 +· · ·+ξryjr

,
then (p1−p2)θ+(q1−q2)π+(µ1−ξ1)yj1 +· · ·+(µs−ξs)yjs

= 0. If µt 6= ξt then the set θ, π, yj1 , yj2 , ...yjr
allows to apply the above

operation once more — a contradiction. Hence µt = ξt for all t. But θ and π are incommensurable and nonzero, hence p1 = p2

and q1 = q2, i.e. for any x from Y there exist unique rational p, q, µ1, µ2, . . . , µr such that x = pθ+qπ+µ1yj1 +µ2yj2 +· · ·+µryjr
.

11c. Suppose a new set is obtained by dissecting the rectangle x× y.
The slit is vertical: the invariant becomes x1f(y) + x2f(y) − xf(y) = 0.
The slit is horizontal: the invariant becomes xf(y1) + xf(y2) − xf(y).

Suppose y1 = f(y1)θ + q1π + µ1y
′
1 + µ2y

′
2 + · · · + µny

′
n y2 = f(y2)θ + q2π + ξ1y

′
1 + ξ2y

′
2 + · · · + ξny

′
n. Then y = y1 + y2 =

(f(y1) + f(y2))θ + (q1 + q2)π + (µ1 + ξ1)y
′
1 + (µ2 + ξ2)y

′
2 + · · · + (µn + ξn)y′n. That is, f(y) = f(y1) + f(y2) and the invariant

has not changed.
11d. Since the invariant does not change under elementary transformation of the set (11c), by 11a invariants of �-scissor-
congruentsets are equal. However the invariant of the set (a× θ, l× π) equals a, and that of b× π is zero. Hence these sets are
not �-scissor-congruent. 11e. Suppose the contrary. Then by Lemma I the sets of 6 copies of a × θ, l1 × π and of 8 copies of
b× π

2
are l2 × π � - scissor-congruent. However the first set is �-scissor-congruent to the set 6a× θ, l1 × π, and the second one

to the set ( b
2

+ l2) × π. Hence two latter sets are �-scissor-congruent, but this is impossible by Lemma II in view of 10d. A
contradiction.
12a. Solution based on reduction to Lemma II. If the rectangle a×b can be dissected into squares, then it is �-scissor-congruent
to the rectangle b × a (since the square maps onto itself under rotation through 90◦.) Then by Lemma II the relation a

b
is

rational.
Straightforward solution. We also show that side ratio of a rectangle is uniquely determined by the arrangement of squares.
Fix b. Let x1, x2, . . . , xn be the side lengths of squares. The sides of squares may join into segments which are either sides of
a rectangle, and hence xi1 + xi2 + · · · + xis

= a or xi1 + xi2 + · · · + xis
= b, or from both sides they side with squares whose

sides satisfy a1 + a2 + · · · + as = b1 + b2 + · · · + bt, here a1, a2, . . . , as are sides of squares, say, from the left and b1, b2, . . . , bt
from the right.
Write down all these equations. Express the variables subsequently and substitute them in the remaining equations starting
from a. Eventually, the variables of the group containing a are expressed through the variables of another group by linear
combinations with rational coefficients. Prove that the second group contains only b. Note that if the values of variables in the
second group are such that all variables are positive then we obtain the required dissection of the rectangle into squares.
a = ξ1x1 + ξ2x2 + · · · + ξnxn + ξb
xi = µi1x1 + µi2x2 + · · · + µinxn + µib
Naturally, the coefficients are nonzero only at variables of the second group. Let xn be in the second group. Take the
original dissection, replace xn by ε so that each x and a remain positive. We obtain another dissection into squares of sizes
x1 + µ1nε, x2 + µ2nε, . . . , xn−1 + µn−1nε, xn + ε and a rectangle a+ ξnε× b.
Write down the equation for areas: (a + ξnε)b = (x1 + µ1nε)

2 + (x2 + µ2nε)
2 + · · · + (xn−1 + µn−1nε)

2 + (xn + ε)2 ⇒
(µ1n

2 + µ2n
2 + · · · + µn−1n

2 + 1)ε2 + (2x1µ1n + 2x2µ2n + · · · + 2xn−1µn−1n + 2xn − ξnb)ε = 0
We see that not more than two ε’s satisfy this equation but we could start with any ε from some neighborhood of zero. Thus the
second group contains only b and no x. As already mentioned, all variables are expressible as linear combinations of variables
from the second group, so a = pb where p is rational.
”Physical” solution. Our assertion also follows from the result of Problem 13b with R = 1.
12b. Suppose the contrary. Let a1, a2, . . . , an be the edges of tetrahedrons in a dissection of a tetrahedron having edge a. Then
the result of Problem 10 implies that the set 6a1 × θ, 6a2 × θ, . . . , 6an × θ is �-scissor-congruent to the set 6a× θ, l× π. Hence
by Problem 11 we have a1 + a2 + · · · + an = a. The volumes are equal: a3

1 + a3
2 + · · · + a3

n = a3. Cube the first equation:
a3
1 + a3

2 + · · · + a3
n + A = a3 where A > 0 — a contradiction with the second equation.

Sketch of a geometric solution. Take an edge of a smaller tetrahedron completely contained in a face of a larger tetrahedron.
Then all the dihedral angles at this edge are equal to θ, but their sum should be π. Since θ and π are incommensurable, we
obtain a contradiction.
13a. Let U1 and U2 be voltage in the upper and the lower non-boundary nodes. If the calorification at the 2nd and 3nd resistors
is greater than at the 4th and 5th ones then replace U1 by U2. The total calorification will decrease. If the calorification is equal
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then we decrease the total calorification by the same way. Hence the minimum calorification is obtained at U1 = U2. Now the
circuit is reduced by obvious elementary transformations to a circuit consisting of a single resistor.
13b. The circuit is reduced by obvious elementary transformations to a circuit consisting of a single resistor.
14a. Geometrical solution. By problem 11, the given dissection of the rectangle can be obtained as a sequence of elementary
(and inverse to them) transformations. Now note that the total resistance of the circuit does not change under an elementary
transformation.
”Physical solution”. Suppose that a rectangular plate is made of a homogeneous conductive material. Assume its specific
resistance to be equal to 1. Connect the vertical sides of the plate with poles of a direct current source. Then the resistance of
the plate equals the ratio of horizontal and vertical sides. Now suppose that the rectangle is dissected into smaller rectangles.
Mark all slits on the plate. Note that the sense of current on the plate is horizontal. So if we dissect the plate through all
horizontal slits then its resistance does not change.
Now we may dissect the plate through all vertical slits and connect by wires those pairs of vertical sides of small rectangles
which did coincide in the original rectangle. Clearly total resistance of the circuit does not change.
Each of small rectangular plates in the circuit obtained is a resistor with resistance equal to the ratio of the horizontal and the
vertical sides of the corresponding plate.
Thus we have shown that total resistance of the circuit corresponding to a dissection of a rectangle equals its side ratio. This
implies the assertion of Problem 14a.
14b. Analytical solution. Suppose U = 1. Suppose the minimum calorification corresponds to U1, U2, . . . , Un. Fix U2, U3, . . . , Un

and consider the calorification as a function of U1. Since this function is a sum of squares of linear functions and is not constant,
after grouping coefficients we get a positive coefficient at U2

1 . The minimum of a square function is achieved at the vertex of a
parabola, hence U1 = a2(R)U2 +a3(R)U3 + · · ·+an(R)Un +a1(R) where ai(R) is a ratio of two polynomials in R having integer
coefficients. Substitute the expression for U1 into our square function to get a function in (n − 1) variables. As a function

in U2, it cannot be constant (consider the behavior of calorification for large U2). Arguing as above, we obtain Un = Pn(R)
Qn(R)

.

Returning, we find Ui = Pi(R)
Qi(R)

. Thus the total calorification equals U2

P
= P (R)

Q(R)
.

Geometrical solution. We will show that the side ratio of the dissected rectangle is the ratio of some polynomials with integer
coefficients in side ratios of rectangles. Let x1, x2, . . . , xn be the lengths of vertical sides of rectangles, and R1, R2, . . . , Rn

be the ratios of their horizontal and vertical sides. The sides of the rectangles may be united into segments. Either such
a segment is a side of the initial rectangle, hence xi1 + xi2 + · · · + xis

= a or xi1Ri1 + xi2Ri2 + · · · + xis
Ris

= b, or this
segment is situated between two dissection rectangles whose sides satisfy xi1 + xi2 + · · · + xis

= xj1 + xj2 + · · · + xjt
or

xi1Ri1 + xi2Ri2 + · · ·+ xis
Ris

= xj1Rj1 + xj2Rj2 + · · ·+ xjs
Rjs

, here xi1 , xi2 , . . . , xis
are sides of the rectangles from one side,

and xj1 , xj2 , . . . , xjt
from the other.

Write down all these equations (in variables x’s, a and b). Express the variables except b subsequently and substitute to the
remaining equations, starting with a. After using all possibilities we obtain that each variable from the first group (containing
a) is expressed through the variables from the second group (containing b) as a linear combination whose coefficients are ratios
of polynomials in R1, R2, . . . , Rn:
a = ξ1x1 + ξ2x2 + · · · + ξnxn + ξb
xi = µi1x1 + µi2x2 + · · · + µinxn + µib (i = 1, 2, . . . ,n)
The left-hand variables are expressed by equations which have nonzero coefficients only at the variables from the second group
(for these variables we add equations xi = xi).
Let us prove that the second group consists of b only. Suppose the contrary. Let xn belong to the second group. Note

that if the variables from the second group have such values that all equations are valid and the values are positive then
we obtain the required dissection of the rectangle (prove this). Take the original dissection, increase xn by ε so that all x’s
and a remain positive. We obtain a large rectangle with sides a + ξnε and b dissected into rectangles with vertical sides
x1 + µ1nε, x2 + µ2nε, . . . , xn−1 + µn−1nε, xn + ε.
The equality of areas has the form (a+ ξnε)b = R1(x1 +µ1nε)

2 +R2(x2 +µ2nε)
2 + · · ·+Rn−1(xn−1 +µn−1nε)

2 +Rn(xn +ε)2 ⇒
(R1µ

2
1n +R2µ

2
2n + · · · +Rn−1µ

2
n−1n + 1)ε2 + (2R1x1µ1n + 2R2x2µ2n + · · · + 2Rn−1xn−1µn−1n + 2Rnxn − ξnb)ε = 0

We see that not more than two ε’s satisfy this equation, but originally we can take any ε from some neighborhood of zero. Hence
the second group in fact does not contain any x but b only. As was already noted above, all variables of the first group can be
expressed as linear combinations of the variables from the second group, that is, a = pb, where p is a ratio of polynomials in
R1, R2, . . . , Rn.
14c. Answer: no, it is impossible. Increase the resistance of this resistor keeping the voltage at all nodes the same. Then the
calorification will decrease, and after redistribution it will decrease once more, hence the total resistance will increase.

14d. Suppose a rectangle with side ratio R is dissected into rectangles with side ratio R and 1
R

, and there exists some rectangle
of the second form. After dilation with factor R we obtain a square dissected into squares and rectangles having side ratio 1

R2 .
By Problem 14a, we have a circuit with resistance 1, which consists of resistors with resistance 1 and 1

R2 . By Problem 14b,
total resistance is a ratio of polynomials in R with integer coefficients. Assign the value 1 to it.
1) If the ratio of the polynomials is not 1 identically then R is a root of a polynomial with integer coefficients.
2) If both polynomials are equal then under increasing R, total resistance remains equal to 1. Then if some resistor has resistance
1

R2 then its resistance decreases. If we decrease these resistance one after another then the solution of Problem 14 shows that
total resistance decreases, a contradiction.

SUMMARY: COMPLETE INVARIANTS.

In the present project, we have constructed examples of invariants which make it possible to prove impossibility of some
dissections. A natural question arises, what invariants among them are complete, that is, in which cases equality of invariants
for two polygons implies existence of the required dissection?

It turns out that most of the constructed invariants are in fact complete.
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Start with the simplest example, Jl(M) (Hadwiger invariant). As shown above, if a polygon M can be dissected into several
polygons which can be combined using only parallel shifts of parts to form a new polygon M ′ then Jl(M) = Jl(M

′) (Problem
4c). In some sense, the converse turns out to be true as well:

Hadwiger–Gluer Theorem. [1] A polygon M can be dissected into several polygons which can be combined into a polygon
M ′ by parallel shifts of parts only, if and only if the areas of M and M ′ are equal and any directed line l satisfies Jl(M) = Jl(M

′).

We do not know whether the similar assertion is valid for the invariant Jl,φ(M) (cf. Problem 5a). It is known to be true
in the particular case φ = π. Then Jl,φ(M) ≡ 0, and another Hadwiger–Gluer theorem states that any two polygons in the
plane, having equal area can be dissected into polygons whose corresponding sides are parallel. At first sight, this is improbable:
consider, for instance, two congruent triangles in the plane such that one of them is obtained from the other one by rotation
through a small angle.

Now consider polyhedrons. The set of rectangles which we attach to polyhedron is called its Dehn invariant (this definition
is equivalent to the usual algebraic definition [2]). Surprisingly, some converse for Lemma I is true as well:

Sidler theorem [1] If two polyhedrons have equal volume and the corresponding sets of rectangles become �-scissor-congruent
after adding appropriate rectangles of the form l × π then two original polyhedrons are scissor-congruent.

The above constructed invariant of �-scissor-congruence of sets of rectangles in the plane is not complete but an analogous
procedure leads to a complete invariant (Kenyon invariant [4]).

To conclude, let us discuss sufficiency of the obtained conditions for the numbers α, β, γ and x in Problems A, B, D. We
don’t know whether the number x in Problem D be a root of an arbitrary polynomial having integer coefficients. However a
similar problem on dissection a square into similar rectangles has negative answer:

Laszkovich–Szekeres–Freiling–Rinne theorem. [3, 5] For any x > 0 the following conditions are equivalent:
(1) a square can be dissected into similar rectangles with side ratio x;
(2) the number x is algebraic, and all complex numbers conjugate to it have positive real part;
(3) there exist positive rational numbers c1, c2, . . . , cn such that

c1x+
1

c2x+
1

· · · +
1

cnx

= 1.

Thus a square can be dissected into similar rectangles with side ratio 2 +
√

2 but cannot be dissected into rectangles with
side ratio 1 +

√
2.

We don’t possess a complete description of angles α, β, γ such that triangles in Problems A and B can be dissected. It is
not even known whether a triangle exists which is not right but can be dissected into several triangles similar to it but oriented
oppositely.
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