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10th Hilbert Problem

Yu. V. Matiyasevich, Ya. Abramov, A. Ya. Belov-Kanel,

I. A. Ivanov-Pogodaev, A. S. Malistov

Equations both parts of which are polynomial functions with integer coefficients, and the solutions
are to be expressed in integer numbers are quite common in mathemetics.

In 1900 David Hilbert [1900] delivered his famous lecture entitled ”Mathematische Probleme”
before the Second International Congress of Mathematicians. This paper contains 23 problems, or,
more precisely, 23 groups of related problems, that the nineteenth century left for the twentieth
century to solve. Problem number ten is about Diophantine equations:10. Determination of the solvability of a Diophantine equation

Given a diophantine equation with any number of unknown quantities and with rational

integral numerical coefficients: To devise a process according to which it can be determined

by a finite number of operations whether the equation is solvable in rational integers.

Today we read the words “devise a process” to mean “find an algorithm.” When Hilbert’s
Problems were posed, there was no mathematically rigorous general notion of algorithm available.
The lack of such a notion was not in itself an obstacle to a positive solution of Hilbert’s Tenth
Problem, because for any particular algorithm it was always clear that it actually gave the desired
general method for solving the corresponding problem.

During the 1930’s, Kurt Godel, Alonzo Church, Alan Turing, and other logicians provided a
rigorous formulation of the notion of computability; this made it possible to establish algorithmic
unsolvability, i.e., the impossibility of the existence of an algorithm with certain properties. Soon
afterwards the first examples of algorithmically unsolvable problems were found, first in mathematical
logic itself and then in other branches of mathematics.

Computability theory produced all the necessary tools for tackling the unsolvability of Hilbert’s
Tenth Problem. The first in a series of papers in this direction appeared at the beginning of the
1950’s. The continuing effort culminated in a “negative solution” of Hilbert’s Tenth Problem in 1970
by Yury Matiyasevich.

We will follow that proof.

A. Diophantine Sets

We will seek only nonnegative integer solutions of the equations in this problem.

Consider an equality D(a1, . . . , an, x1, . . . , xm) = 0, where D is a polynomial with integer coef-
ficients with respect to all the variables a1, . . . , an, x1, . . . , xm. Suppose that the variables are
separated into parameters a1, . . . an and unknowns x1, . . . xm.Fixing values of the parameters results
in the particular Diophantine equations that comprise the family. (Note: we consider integer param-
eters and coefficients and seek nonnegative integer solutions).

For example, consider D(a1, a2, x) = a1x
2+a2x. The equations (for example) x2 = 0, 2x2+6x = 0,

3x2 − 17x = 0 are in the family. In the first case we choose a1 = 1, a2 = 0. In the second case we do
a1 = 2, a2 = 6, in the third case we do a1 = 3, a2 = −17.

The family of Diophantine equations D(a1, . . . , an, x1, . . . , xm) = 0 deines a set M consisting of
the n-tuples (a1, . . . , an) of values of the parameters a1, . . . , an for which there are values of the
unknowns x1, . . . xm satisfying the equality D(a1, . . . , an, x1, . . . , xm) = 0. The number n is called
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the dimension of the set M and equivalence D(a1, . . . , an, x1, . . . , xm) = 0 is called a Diophantine
representation of M . Sets having Diophantine representations are also called Diophantine.

The set of even numbers is Diophantine: the equation 2x = a has an integer solution if and only
if a is even. Also, consider the set of pairs (a, b) such that a is odd and b is even and b > 2. To prove
that this set is Diophantine we should consider the representation 2(2x + 1) = a2(b3 − 14).

� A1. Prove that the following number sets are Diophantine:

a) the set of even positive numbers;

b) the set of odd numbers;

c) the set of squares;

d) the set of cubes.

� A2. Prove that any system of Diophantine equations are equivalent to some unique Diophantine

equation. (i.e. the sets of solutions are the same.)

� A3. Prove that the union and intersection of two Diophantine sets of the same dimension is also

Diophantine.

� A4. Suppose that the n-tuples set M are Diophantine. Consider the m-tuples set (a1, . . . , am)
such that there exist am+1, . . . , an with (a1, . . . , an) ∈ M. Prove that this m-tuples set (a1, . . . , am)
is Diophantine.

It is often more convenient to use, instead of the language of sets, an essentially equivalent
language of properties and relations. For example, instead of saying that the set of even numbers
is Diophantine, one can say that the property is an even number is Diophantine. Similarly, instead
of considering the set with the representation (a1 − a2)

2 = x + 1, one can say that the relation 6= is
Diophantine. More formally, we say that a property P of natural numbers is a Diophantine property
if the set of numbers having this property is Diophantine. Correspondingly, an equivalence of the
form P (a) ⇔ ∃x1 . . . xm[D(a, x1, . . . , xm) = 0] is called a Diophantine representation of property P .

Similarly, a relation R among n natural numbers is called a Diophantine relation if the set of all
n-tuples for which the relation holds is Diophantine. Correspondingly, an equivalence of the form

R(a1, . . . , an) ⇔ ∃x1 . . . xm[D(a1, . . . , an, x1, . . . , xm) = 0]

is called a Diophantine representation of relation R.

At last, function a = F (b1, . . . bk) is called a Diophantine function if the set of all k + 1-tuples
[a, b1, . . . , bk] for which the equality a = F (b1, . . . bk) holds is Diophantine.

� A5. Prove that the following relations are Diophantine: a) “greater” relation (a > b);

b) “divisibility” relation (a divide b).

c) Consider the set of triples (a, b, c) such that a is a remainder of division b with c. (notation:

a = b (mod c)) Prove that this set is Diophantine.

d) Consider the set of triples (a, b, c) such that a = min{b (mod c), (c − b) (mod c)}
(notation: a = b (amod c)) (This is the distance to the nearest integer number dividing by c.)

e) Prove that the set of triples (a, b, c) such that a =
[

b
c

]

is Diophantine.

� A6. Prove that the “relative primality” relation and GCD and LCM functions are Diophantine.

� A7. Prove that the following sets are Diophantine:

a) the set of all integer numbers which are not squares;

b) the set of pairs (a, b) such that a is not power of b.
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Pell equation

Definition. Equation x2 − dy2 = 1, d ∈ N is called Pell Equation.

� A8. Pell Equation.

a) Solution (x, y) is called nontrivial, if y 6= 0. Let d be a square. Prove that Pell equation has
no nontrivial solution.

b) Let (u1, v1) and (u2, v2) be the solutions of the Pell equation x2 − dy2 = 1. So if u3 +
√

dv3 =

(u1+
√

dv1) ·(u2+
√

dv2) then (u3, v3) is solution too. In particular, if (x, y) is a solution then (xn, yn)

is solution with xn +
√

dyn = (x +
√

dy)n.

c) The solution is called minimal if it is nontrivial and |x+y| is minimum. Prove that any solution
is a minimal one in some degree.

It is known that for any d which is not a square some solution does exist. It is a hard problem so
we do not include it into this list. You can find a proof e.g. in Bugayenko ”Pell Equation”

� A9. Special case of Pell equation. a) d = k2 − 1 ⇒ (k, 1) is a minimal solution.

b) d = k2 − 1, (x1, y1) is a minimal solution, (xn, yn) = (x1, y1)
n. Prove that yn ≡ nmod(k − 1).

c) Another case of Pell equation. Find the solutions of x2 − ( b2

4
− 1)y2 = 1.

Consider the following sequence: α0(b) = 0, α1(b) = 1, αn+2(b) = bαn+1(b) − αn(b), b > 2.

� A10. Prove that x2 − bxy + y2 = 1, x, y > 0, if and only if
{

x = αm+1(b)

y = αm(b)
or

{

x = αm(b)

y = αm+1(b)

for some integer m.

� A11. Prove that αn(2) = n;

� A12. Prove that αk+l(b) = αk(b) · αℓ+1(b) − αk−1(b) · αℓ(b).

� A13. Prove that αn(b) ≡ αn+4m(b) (mod v), where v = αm+1(b) − αm−1(b);

� A14. Suppose that b1 ≡ b2 (mod q). Prove that αn(b1) ≡ αn(b2) (mod q).

� A15. Prove that 2m is the value of the number k such that for fixed n the following statement

holds: αn(w) (amod v) = αn+k(w) (amod v), where w ≡ b (mod v), v = αm+1(b) − αm−1(b).

� A16. Suppose that w ≡ b (mod v), w ≡ 2 (mod u), where v > 2αk(b), u > 2k. Prove that the

first k elements of the sequence
(

α0(b), 0
)

, . . . ,
(

αn(b), n
)

, . . .

are coincide with the first k elements of the sequence
(

α0(w) (amod v), α0(w) (amod u)
)

, . . . ,
(

αn(w) (amod v), αn(w) (amod u)
)

, . . .

� A17. Suppose that (αk(b))
2 divides αm(b). Prove that αk(b) divides m.

� A18. Prove that 2αk(b) < u ⇒ 2k < u.

� A19. Prove that the set {(a, b, c) | a = αc(b), b > 3} is Diophantine.

� A20. Prove that (k − 1)n 6 αn+1(k) 6 kn;

� A21. Prove that (1 + s)n > 1 + ns s ∈ R, s > −1, n — nonnegative integer.

� A22. Prove that bc = limn→∞

αc+1(bn+4)
αc+1(n)

.

� A23. Prove that the set
{

(a, b, c)
∣

∣ a = bc
}

is Diophantine.
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B. Coding

Consider the following regulation of the natural numbers pairs:

〈0, 0〉 , 〈0, 1〉 , 〈1, 0〉 , 〈0, 2〉 , 〈1, 1〉 , 〈2, 0〉 , 〈0, 3〉 . . .

Note that the number of the pair 〈a, b〉 in this sequence can be represented in the polynomial
form: Cantor(a, b) = ((a + b)2 + 3a + b)/2. The functions ElemA(c) and ElemB(c) which are
represent the first and the second elements of the pair are also Diophantine:

a = ElemA(c) ⇐⇒ ∃y : [(a + y)2 + 3a + y = 2c];

b = ElemB(c) ⇐⇒ ∃x : [(x + b)2 + 3x + b = 2c]

This numeration can be easily generalized for triples, fours, etc. For example, we can assign:

Cantor1(a1) = a1, Cantorn+1(a1, . . . an+1) = Cantorn(a1, . . . an−1,Cantor(an, an+1))

Further, the number Cantorn(a1, . . . an) is called cantor number of the tuple 〈a1, . . . an〉. Let c
be the cantor number of the n-tuple. Suppose that Elemn,m(c) is the value of m-component of that
n-tuple with number c. The function Elemn,m(c) is Diophantine:

a = Elemn,m(c) ⇐⇒ ∃x1 . . . xm−1xm+1 . . . xn : [22n

Cantorn(x1, . . . xm−1, a, xm+1 . . . xn) = 22n

c]

(Cantorn is not a polinomial with integer coefficients so we add 22n

factor.)

We should note that this numeration has one serious defect: if n and m are fixed then function
Elemn,m(c) is Diophantine. However, it is hard to prove that three arguments function Elemn,m(c)
is Diophantine. To deal with tuples with non fixed lenght we should use some different methods.

Positional Code

Suppose that 〈a1, . . . , an〉 is a sequence of integer numbers (n-tuple). Let us choose b > ai for
all i. Suppose that

a = anbn−1 + an−1b
n−2 + · · · + a1b

0.

In other words, a1, . . . , an are the digits in the positional notation of a with base b. So, using the
triple (a, b, n) we can restore the n-tuple 〈a1, . . . , an〉. The triple (a, b, n) is called positional code of
the n-tuple 〈a1, . . . , an〉. (0, b, 0) is the positional code of the empty tuple. Note that there are some
triples which are not codes of any tuple. But, we can easily prove that the relation “to be positionsal
code” is Diophantine:

Code(a, b, c) ⇐⇒
{

b > 2,

a < bc.

� B1. Prove that the set of qudruples (a, b, k, c), such that the pair (a, b) encode the sequence and

c equals to the k-th member of this sequence.

� B2. a) Encode the sequence ci =
(

n

i

)

and show that the set of triples (c, m, n), such that c =
(

m

n

)

,

is diophantine.

b) Prove that m! = lim
n→∞

nm

(

n

m

) and that the set of numbers, that are factorials, is diophantine.

� B3. Prove that the set of prime numbers is diophantine.
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� B4. Prove that equation D(a, x1, . . . , xm) = 0 has a solution in variables of x1, . . . , xm if and

only if then equation

a = (x0 + 1)(1 − D(x0, x1, . . . , xm)2) − 1

has a solution in variables of x0, x1, . . . , xm.

� B5. Prove that there exists such a polynomial with integer coefficients, such that the set of its

positive values is the set of prime numbers.

Further we will get the skill to unite two sequence into one, to compare their corresponding
elements, to check if two triples encode the same sequence, — and all this by solving the corresponding
diophantine equation.

� B6. (Kummer theorem) a) Prove that the number k, such that n! divides on pk, but doesn’t

divide on pk+1, equals
[n

p

]

+
[ n

p2

]

+
[ n

p3

]

+ . . .

b) Prove that the number l, such that
(

m+n

n

)

divides on pl, but doesn’t divide on pl+1, is equal to

the number of carries over the next columns in p-positional sistem of countering, if we add together

numbers m and n

� B7. Consider the set of triples (a1, a2, p), where p is prime and pairs (a1, p) and (a2, p) encode

the sequences such that for any k the k-th element of the first sequence not greater than the k-th

element of the second sequence. Prove that this set is diophantine.

Prompt. What will you get, if you add together a1 and a2 − a1?

� B8. Consider the set of quadruples (a, p, n, e), where p is prime and triple (a, p, n) encode the

sequence, such that each element of this sequence not greater than e. Prove that this set is diophan-

tine.

� B9. Let (a1, b1, n) and (a2, b2, n) encode the same sequence and b1 < b2. Prove that a1 ≡ a2

(mod b2 − b1).

� B10. Let, in the proposes of the previous problem, bn
1 < b2−b1. Prove that a1 is defined uniquely

by the numbers a2, b1, b2, n.

� B11. Prove that the set of quadruples (a1, b1, a2, b2), such that (a1, b1) and (a2, b2) encode the

same sequence, is diophantine.

� B12. Consider the set of quadruples (a1, b1, a2, b2), such that pairs (a1, b1) and (a2, b2) encode

the sequences and for any k the k-th member of the first sequence not greater than the k-th member

of the second sequence. Prove that this set is diophantine.

� B13. Consider the set of quadruples (a, b, n, e), where triple (a, b, n) encode the sequence, such

that each element of this sequence not greater than e. Prove that this set is diophantine.

� B14. Consider the set of octoples (A, B, a1, b1, n1, a2, b2, n2), such that the pair (A, B) encode

the sequence, that can be constructed from the sequence, encodable by the triple (a1, b1, n1), by

continuing it by the sequence, encodable by the triple (a2, b2, n2). Prove that this set is diophantine.

� B15. Show how to encode the sequences p1 + q1, p1 + q2, . . . , p1 + qm, p2 + q1, p2 + q2, . . . , p2 +
+ qm, . . . , pn + qm and p1 · q1, p1 · q2, . . . , p1 · qm, p2 · q1, p2 · q2, . . . , p2 · qm, . . . , pn · qm by using the

codes of p1, . . . , pn and q1, . . . , qm.


