
∗ p r o b l e m

∗ H i l b e r t

10th 6
10

th
Hilbert Problem

Yu. Matiyasevich, Ya. Abramov, A. Belov-Kanel,

I. Ivanov-Pogodaev, A. Malistov, I. Netay

C. Turing machines

The number-theoretic techniques developed in the previous chapters will permit us to tackle Hilbert’s
Tenth Problem from the point of view of computability theory. But first we must clarify what is to be
understood by the word “process” when Hilbert speaks of “a process according to which it can be determined
by a finite number of operations whether the equation is solvable in rational integers”. There are many ways
in which this needed clarification can be provided, but the fundamental idea is always the same. We are able
to convince ourselves that we have a general method for solving problems of a particular kind if, by using
this method, we can solve any individual problem of that kind without employing our creative abilities, that
is, so to speak, mechanically.

We deal with computers not only in real life, but also in mathematics. Notion of abstruct machine allows
us to formalize idea of general method for some class of problems.

Now let us describe Turing machines. A Turing machine has memory in the form of a tape divided into
cells. The tape has a single end: to make matters definite, we assume it to be on the left. To the right, the
tape is potentially infinite. This means that, in contrast with actual physical computers, a computation by
a Turing machine will never lead to an abnormal termination with the diagnostic “insufficient memory” On
the other hand, any particular computation will require only finitely many cells.

Each cell will either be empty or will contain a single symbol from a finite set of symbols A = {a1, a2, . . . aw}
called an alphabet. Different machines may have different alphabets. One of the symbols will play a special
role in that it will always mark the left-most cell and appear nowhere else. We use the symbol “*” for this
marker. In addition, we need a symbol to denote an empty cell, and we follow tradition in using the letter
“∧” for this purpose.

Symbols on the tape are read and written by a head, which at each moment of discrete time scans one of
the cells. The head can move along the tape to the left and to the right.

At each moment, the machine is in one of finitely many states that, following tradition, we will denote by
q1, . . . , qv. One of the states is declared to be initial, and we shall always suppose that this is q1. In addition,
one or more states are declared to be final.

The next action of a machine is totally determined by its current state and the symbol scanned by the
head. In a single step, the machine can change the symbol in the cell, move the head one cell to the left or
to the right, and pass into another state. The actions are defined by a set of instructions of the form:

«state qi + symbol aj → Left(Right, Stop) + qk + aℓ».

This instruction means the the following «if qi is the current state of the head which are situated in the
cell with simbol aj, then the machine do the following: 1. Symbol aj must be changed for the symbol aℓ; 2.
Head moves to the left (L), right (R) or stand (S); 3. Head changes its state for qk».

These instructions must be written for all possible combinations of symbol qk and state qi. The whole
pack of these instructions is called the program of the machine.

All the machines that we are going to construct will have the same alphabet {∗, 0, 1, 2, 3, λ}.

There will be two final states: q2 and q3 and we shall interpret reaching q2 as the answer «yes» and
reaching q3 as the answer «no». The cells containing the symbol «λ» will play the role of proxies for empty
cells, in the following sense: only empty cells and cells containing the symbol λ may be situated to the right

∗ p r o b l e m

∗ H i l b e r t

10th 7
of a cell containing the symbol λ and for any state qi the instructions with left-hand sides qiλ and qi∧ will
have identical right-hand sides.

Example of the simpliest machine. Machine LEFT with the following instructions
q1∗ → ∗Sq2

q10 → 0Lq2

q11 → 1Lq2

q12 → 2Lq2

q13 → 3Lq2

q1λ → λLq2

q1∧ → λLq2

moves the head one cell to the left unless it was already scanning the leftmost cell marked by the symbol «∗».

Machine WRITE(0) with instructions
q1∗ → ∗Sq2

q10 → 0Sq2

q11 → 0Sq2

q12 → 0Sq2

q13 → 0Sq2

q1λ → 0Sq2

q1∧ → 0Sq2

writes the symbol «0» to the cell scanned by the head unless it is the leftmost cell containing the marker «∗».
Similar actions are performed by the machines WRITE(1), WRITE(2), WRITE(3) and WRITE(λ) the instructions
for which can be obtained from written instructions by replacing the symbol «0» in the right-hand sides of
the instructions by «1», «2» «3» and «λ» respectively.

Machine READ(0) with instructions
q1∗ → ∗Sq3

q10 → 0Sq2

q11 → 1Sq3

q12 → 2Sq3

q13 → 3Sq3

q1λ → λSq3

q1∧ → λSq3

determines whether the cell scanned by the head contains the symbol «0» or not and then halts in state
q2 or q3, accordingly; by our convention these correspond respectively to “yes” or “no” answers. In a similar
manner, machines READ(1), READ(2), READ(3), READ(∗) determine the presence of symbols «1», «2», «3», «∗».

� C0. a) Construct the machine STOP, which goes directly into the final state q3 from the state q1.

b) Construct the machine READNOT(x) which recognizes the absence of the symbol x in the cell observed by

the head.

Composition of machines: two ways

The First method for constructing a new Turing machine M from two given machines M1 and M2 is as
follows:

1. In all instructions of machine M1, the final state q2 is replaced by qv+1 where v is the number of states
of machine M1 (it should be recalled that final states can occur only in the right-hand sides of instructions).

2. In all instructions of machine M2 every non-final state qi is replaced by qv+i (in particular, q1 is replaced
by qv+1.

3. The set of instructions of the new machine M consists of the instructions of both of the given machines,
modified as described above.

∗ p r o b l e m

∗ H i l b e r t

10th 8
q1

q2

q3

M1

q1
q2

q3

M2

M

q1
q2

q3

The action of machine M clearly consists of the consecutive execution of the actions of machines M1 and
M2 as originally constituted, provided that machine M1 halted in state q2. To denote machine M , we shall
use any one of the three notations:

M1;M2 M1 and M2 или if M1 then M2.

The second method for constructing a new Turing machine M from two given machines M1 and M2

allows us to construct cycles of the following types: FOR i=1 TO N or WHILE. Such type cycles appears not
only in programming but in mathematics as well. For example, in order to calculate function f(n) = 22n

the
number 2 needs to be squared n times.

This method is as follows:

1. In all instructions of machine M1 the final state q2 is replaced by qv+1, where v is the number of states
of machine M1 and the final state q3 is replaced by q2.

2. In all instructions of machine M2 every non-final state qi is replaced by qv+i and the final state q2 is
replaced by q1.

3. The set of instructions of the new machine M consists of the instructions of both of the given machines,
modified as described above.

q1
q2

q3

M1

q1
q2

q3

M2

M

q1
q2

q3

The action of this machine consists in performing in turn the actions of machines M1 and M2 as originally
constituted until one of them enters the final state q3

The Turing machine constructed in this way will be denoted by

while M1 do M2 od.

The notation introduced above resembles a primitive programming language. (In fact, every such “program”
denotes a particular Turing machine.) However, this language is not so stupid as it looks like. It is powerful
enouth to emulate any computer. Famous Church thesis claims that any algorithm can be realized on the
Turing machine. The notion of Turing machine formalizes the notion of mechanical work in completely
adecuate way. In the sequel, we identify Turing machines and algorithms.

Machine
STAR = while READNOT(∗) do LEFT od

puts the head into the leftmost cell (marked by «∗»)

Machine
VACANT = STAR; while READNOT(λ) do RIGHT od

puts the head into the leftmost cell containing the symbol «λ» if such exists; otherwise it puts the head into
the leftmost empty cell.

∗ p r o b l e m

∗ H i l b e r t

10th 9
� C1. a) Construct the machine JUMP, which moves the head to the right until the first cell containing the

symbol «0»; is reached; if all cells containing «0» are to the left of the head, then the machine will never

halt.

b) Construct the sequence of machines FIND(k), which move head to the cell containing the symbol «0» with

number k from the left.

We can store tuples of numbers on the tape of a Turing machine: for storing the tuple (a1, . . . , an) we
should use the symbols 1, separated by the symbols 0. For example, the tuple (3, 1, 2, 0, 2) can be written
by the following way: ∗0111010110011λ So, Turing machine recieve some tuple and make transformation
with it.

� C2. Construct the Turing machines for transforming the tuple (a1, . . . , an) into the tuple:

a) (a1, . . . , an, 0);
b) (a1, . . . , an + 1);

� C3. a) Construct the Turing machine which transorms the tuple (a1, . . . , an) into the tuple (a1, . . . , an−1),
(if an = 0 then the machine must stop in the state q3.)
b) Construct the Turing machine which trancates the tuple (a1, . . . , an), yielding the tuple (a1, . . . , an−1).

� C4. Construct the Turing machines which transforms the tuple (a1, . . . , an) into the tuple:

a) (a1, . . . , an, ak + al), for fixed 1 6 k, l 6 n;

b) (a1, . . . , an, ak × al), for fixed 1 6 k, l 6 n;

� C5. Construct the machine NOTGREATER(k, l) which compares the elements ak и al of the tuple (a1, . . . , an)
and stops in state q2 or q3 depending on which of the two inequalities ak 6 al or ak > al holds.

� C6. Construct the machine which transform the tuple (a1, . . . , an) into the tuple:

a) (a1, . . . , an, b, c), where (b, c) is the pair that follows immediately after the pair (an−1, an) in Cantor

numeration;

b) (a1, . . . , an, b, c), where (b, c) is the pair with Cantor number an.

� C7. Consider the equation D(a1, . . . , an, x1, . . . xm+1) = 0. Construct the Turing machine which uses

the the tuple (a1, . . . , an, y0) and determines whether y0 is the Cantor number of the tuple (x1, . . . , xm+1)
that satisfy the equation.

� C8. Consider the equation D(a1, . . . , an, x1, . . . xm+1) = 0. Construct the Turing machine that will

eventually halt, beginning with a representation of the tuple (a1, . . . , an) if and only if the equation is

solvable in the unknowns x1, . . . , xm+1.

We shall say that a set ω of n-tuples of natural numbers is Turing semidecidable if there is a Turing
machine M that, beginning in state q1 with a tape containing the canonical representation of the tuple
(a1, . . . , an) and with its head scanning the leftmost cell on the tape, will eventually halt if and only if
(a1, . . . , an) ∈ ω. In this case we say that M semidecides M . (However, there may be no way to estimate
working time or recognize the situation (a1, . . . , an) /∈ ω).

Using the result C7 we prove that every Diophantine set is Turing semidecidable. The aim of the following
problems is to establish the converse implication: every Turing semidecidable set is Diophantine.

Let M be a Turing machine that semidecides a set ω consisting of n-tuples of natural numbers. Let
{α1, . . . , αw} be the alphabet of M . As the machine M carries out its operations, at each moment the symbols
of {α1, . . . , αw} occupy only a finite initial segment of the tape of length, say, l, and we can therefore represent
the tape by the tuple (s1, s2, . . . , sm, . . . , sl−1, sl) consisting of the subscripts of the symbols occurring in the
cells.

The current state qi and the position of the head can be represented by a tuple of the same length
(0, . . . , 0, i, 0, . . . , 0), in which all elements but one are zero; the only non-zero element is equal to the subscript
of the state, and its position corresponds to the position of the head.

∗ p r o b l e m

∗ H i l b e r t

10th 10
The triple consisting of the current contents of the tape, the state, and the position of the head will

be called the configuration. Clearly, tuples (s1, s2, . . . , sm, . . . , sl−1, sl) and (0, . . . , 0, i, 0, . . . , 0) uniquely
determine the configuration. To represent these tuples, we shall use positional coding with a fixed base
β that must be no less than 3 greater than v the number of states of machine M and greater than w, the
number of symbols in the alphabet. The pair (p, t), is called a configuration code if p and t are ciphers of the
tuples above respectively, to the base β.

So, our first goal will be to construct a Diophantine equation D(p, t, x1, . . . , xm) = 0, such that if (p, t) –
is the code of a configuration, then the equation is solvable in x1, . . . , xm if and only if machine M beginning
in this configuration, eventually halts. We shall not be concerned about whether or not the equation is
solvable when (p, t) is not a configuration code.

� C9. Let machine M proceed directly from the configuration with code (p, t) to the configuration with

code [NextP (p, t),NextT (p, t)]. Prove that the functions NextP and NextT is Diophantine.

� C10. Let machine M proceed in k steps from the configuration with code (p, t) to the configuration with

code [AfterP (p, t, k),AfterT (p, t, k)]. Prove that the functions AfterP and AfterT is Diophantine.

� C11. Consider a Turing machine M . Construct an equation with parameters a1, . . . , an which is decideable

if and only if the M starts with the tuple a1, . . . , an and halts.

D. Universal Turing machine

In computer science we have met with different operational systems such as Windows, Dos, Unix which
allows to work with any algorithms. But operational system is also a program. In mathematics we have a
similar term: univeral algorithm. In previous problems we constructed special Turing machine for any new
algorithm. But there is an another way. We can construct a new language for writing that Turing machine
will do. Turing machine will read algorithm from the tape and follow it. This machine has the same program
for different kind of algorithms on the tape. This machine is called the universal Turing machine. It is obvious
that we can number all algorithms (Turing machines) and say something about Turing machine with number
n.

� D1. Coding. Invent a method for writing an algorithm (Turing machine) on the tape.

� D2. Prove that there exists a Turing machine which read from its tape numbers n and m and follows

the n-numbered algorithm which works with number m.

� D3. Algorithm uses itself. Prove that there exists a Turing machine which read number n and follows

n-th algorithm which works with number n.

� D4. Halting problem. a) Assume that there exists a universal Turing machine U(m,n) which check

that n-tn Turing machine starts with number m and stops after several steps. Prove that exists a algorithm

V (n) which show that n-th algorithm starts with n and stops. Prove that there exists an algorithm T (n)
which and stops if and only if V (n) does not stop.

b) Let k be the number of the algorithm T . Does T (k) stop?

E. Universal Diophantine equations

Consider the set of equations U(a1, . . . , an, k1, . . . , kℓ, y1, . . . , yv) = 0. Suppose that there are two groups
of parameters: parameters-elements a1, . . . , an and parameters-codes k1, . . . , kℓ.

Consider some Diophantine equation with n parameters D(a1, . . . , an, x1, . . . , xm) = 0. Let us fix the
parameters combinations such that this equation is decidable. Suppose that we can choose the values

∗ p r o b l e m

∗ H i l b e r t

10th 11
of the codes k1, . . . , kl such that the equation U(a1, . . . , an, k1, . . . , kℓ, y1, . . . , yv) = 0 is decidable with
the same parameters combinations. If we can choose the codes such way for any equation D(a1, . . . , an,
x1, . . . , xm) = 0 , then the equation U(a1, . . . , an, k1, . . . , kℓ, y1, . . . , yv) = 0 is called universal. We can say
that every universal equation provides coding of Diophantine equations with fixed dimension. We can consider
the n-tuple [k1(D), . . . , kℓ(D)] as the code for the equation D = 0.

� E1. Consider a universal Diophantine equation. Suppose that we can increase the number of unknowns.

Prove that we can transorm the equation to the form with one code and the same number of parameters.

� E2. Suppose that there exists a universal Diophantine equation which is coding one-dimension Diophantine

sets. (n = 1.) Prove that there exists a constant m such that for any n there exists an universal Diophantine

equation with u = 1 и v = m.

� E3. Invent the coding (several natural numbers) for equation and potential solution such that there

exists a Diophantine function to determine that this is the solution for this equations.

� E4. Construct a universal Diophantine equation.

� E5. Construct a Diophantine set M such that M is not Diophantine (M ∩ M = ∅ and M ∪ M = N).

� E6. Consider the set M of decidable Diophantine equations without parameters. Prove that M is not

Diophantine.

F. Final problem

� F1. Prove that there are no Turing machine that starts with number k and stops in the state q2 or q3

in complience with that the Diophantine equation with number k decidable or not.

