Hints and solutions to the problems from sections A and B

♦ A 1. a)
$$a - 2x = 0$$

b)
$$a - 2x - 1 = 0$$

$$c) a - x^2 = 0$$

$$\vec{d}$$
) $a - x^3 = 0$

$$igla$$
 A 3. If the sets $\mathbb{A} = \{\mathfrak{F}(x_1,\ldots,x_n) = 0\}$ and $\mathbb{B} = \{\mathfrak{G}(x_1,\ldots,x_n) = 0\}$ then $\mathbb{A} \cap \mathbb{B} = \{\mathfrak{F}(x_1,\ldots,x_n) \cdot \mathfrak{G}(x_1,\ldots,x_n) = 0 \text{ and } \mathbb{A} \cup \mathbb{B} = \mathfrak{F}(x_1,\ldots,x_n)^2 + \mathfrak{G}(x_1,\ldots,x_n)^2 = 0.$

♦ A 4.

$$igoplus A 5. a) $a = b + x + 1$$$

b)
$$a = b \cdot x$$

c)
$$a = c \cdot x + b$$
 and $b < c$

d)
$$\begin{cases} a = c \cdot x + b \\ b \leqslant c - b \\ d \end{cases}$$

$$\begin{cases} a = c \cdot x + b \\ b \leqslant c - b \\ b < c - b \end{cases}$$

e)
$$b = c \cdot a + x$$
 and $x < c$

$$\blacklozenge$$
 A 6. $a(x_1-x_2)+b(y_1-y_2)=1$ if and only if then a and b co-prime.

$$a = kt$$
, $b = lt$, $GCD(k, l) = 1$ if and only if then $t = GCD(a, b)$.

$$LCM(a,b) = \frac{ab}{GCD(a,b)}$$

$$A 7. a) x^2 < a < (x+1)^2$$

$$\blacklozenge$$
 A 8. a) $d = k^2 \Rightarrow (x - ky)(x + ky) = 1 \Rightarrow x - dy = x + dy \Rightarrow y = 0 \Rightarrow x = \pm 1$

b) Since
$$u_3 - v_3 \sqrt{d} = (u_1 - v_1 \sqrt{d}) \cdot (u_2 - v_2 \sqrt{d})$$
, then $u_3^2 - v_3^2 d = (u_1^2 - v_1^2 d)(u_2^2 - v_2^2 d) = 1$

c) $|x'| = \sqrt{1 + y'^2 d} \Rightarrow |x'| + |y'| = \sqrt{1 + y'^2 d} + |y'|$ is monotonic by |y'|. Let $(x + y\sqrt{d})^n < x' + y'\sqrt{d} < (x + y\sqrt{d})^{n+1}$ (x > 0, y > 0, x' > 0, y' > 0). Multiplying it by $(x - y\sqrt{d})^n > 0$ we get $1 < a + b\sqrt{d} < x + y\sqrt{d}$, such that $a^2 - b^2 d = 1$. Since $0 < a + b\sqrt{d}$, then $a - b\sqrt{d} > 0$. Since $a - b\sqrt{d} < 1 < a + b\sqrt{d}$, then b > 0. Since $a - b\sqrt{d} > 0$, then a > 0. So, since while |x| + |y| is increasing, |y| is increasing, $|x| + |y|\sqrt{d}$ is increasing, then (x, y) is not a minimal solution.

♦ A 9. a) See the previous solution.

- b) This statement (and that is $x_n \equiv 1 \pmod{k-1}$) can be proved by induction on n.
- c) It can be solved as the particular case of the next problem: $1=x^2-(\frac{b^2}{4}-1)y^2=(x+\frac{b}{2}y)^2-b(x+\frac{b}{2}y)y+y^2$
- \blacklozenge **A 10.** Consider the minimal solution and prove that every other solution can be constructed as the iteration of
- \blacklozenge **A 11.** This can be proved by induction of n.
- \blacklozenge **A 12.** This can be proved by induction of l.
- igoplus A 13. This can be proved by using the previous problem (since $\alpha_{km}(b)$ divides on $\alpha_m(b)$, $\alpha_{4m-1}(b) = \alpha_{2m-1}(b)(\alpha_{2m}(b) \alpha_{2m-2}(b))$ and $\alpha_{2m}(b) = \alpha_m(b)(\alpha_{m+1}(b) \alpha_{m-1}(b))$.
- \blacklozenge **A 14.** This can be proved by induction on n.
- ♦ A 15. No comments
- ♦ A 16. It is obvious that $\alpha_n(b)(\operatorname{amod} v) = \alpha_n(w)(\operatorname{amod} v)$ and $n(\operatorname{amod} u) = \alpha_n(w)(\operatorname{amod} u)$. Therefore, since $v > 2\alpha_k(b) > 2\alpha_n(b)$ and u > 2k > 2n, then we get the statement we need
- ♦ A 17. No comments
- \blacklozenge A 18. The inequality $k \leqslant \alpha_k(b)$ can be proved by induction on k
- **♦ A 19.** No comments
- \blacklozenge **A 20.** This can be proved by induction on k
- \blacklozenge **A 21.** This can be proved by induction on n
- igl **A 22.** $\frac{(bn+4)^c}{(n-1)^c} \geqslant \frac{\alpha_{c+1}(bn+4)}{\alpha_{c+1}(n)} \geqslant \frac{(bn+3)^c}{n^c}$. The left and right parts of this inequality tend to b^c .
- ♦ A 23. No comments
- $lack B 1. \ c = \left[\frac{a}{b^{k-1}}\right] \pmod{b^k}$
- **B** 2. a) $b = 2^n$, $a = (2^n + 1)^n$ b)
- ♦ **B** 3. *p* is prime if and only if then GCD(p, (p-1)!) = 1
- ♦ **B** 4. $(x_0 + 1)(1 D(x_0, x_1, ..., x_m)^2) 1 \ge 0$ if and only if then $1 D(x_0, x_1, ..., x_m)^2 > 0$, i.e. $D(x_0, x_1, ..., x_m) = 0$. So, $a = (x_0 + 1)(1 0) 1 = x_0$.
- ♦ B 5. It follows from the two previous problems

- ♦ **B** 6. a) The first addendum in this sum equals to the number of the factors divisible by p, the second by p^2 etc.
- b) $\sum (\left[\frac{m+n}{p^k}\right] \left[\frac{m}{p^k}\right] \left[\frac{n}{p^k}\right])$ is equal to the demanded number.
- $lackbox{ }$ **B** 7. $\binom{x_np^{n-1}+\ldots+x_1p+x_0}{y_np^{n-1}+\ldots+y_1p+y_0}$ divides on p if and only if then there exists i, such that $x_i < y_i$.
- **\rightharpoonup B** 8. $a < e \cdot \frac{p^n 1}{p 1}$
- ♦ **B 10.** $a_1 = a_2 \pmod{b_2 b_1}$ (since $a_1 < b_1^n < b_2 b_1$)