
Hints and solutions to the problems from sections A and B

� A 1. a) a − 2x = 0
b) a − 2x − 1 = 0
c) a − x2 = 0
d) a − x3 = 0

� A 2.











D1(x1, . . . , xn) = 0

. . .

Dm(x1, . . . , xn) = 0

⇐⇒ D1(x1, . . . , xn)2+ . . .+Dm(x1, . . . , xn)2 = 0

� A 3. If the sets A = {F(x1, . . . , xn) = 0} and B = {G(x1, . . . , xn) = 0} then
A∩B = {F(x1, . . . , xn)·G(x1, . . . , xn) = 0 and A∪B = F(x1, . . . , xn)2 + G(x1, . . . , xn)2 = 0.

� A 4.

� A 5. a) a = b + x + 1
b) a = b · x
c) a = c · x + b and b < c

d)













{

a = c · x + b

b 6 c − b
{

a = c · x − b

b < c − b

e) b = c · a + x and x < c

� A 6. a(x1 − x2) + b(y1 − y2) = 1 if and only if then a and b co-prime.

a = kt, b = lt, GCD(k, l) = 1 if and only if then t = GCD(a, b).

LCM(a, b) = ab
GCD(a,b)

� A 7. a) x2 < a < (x + 1)2

� A 8. a) d = k2 ⇒ (x−ky)(x+ky) = 1 ⇒ x−dy = x+dy ⇒ y = 0 ⇒ x = ±1

b) Since u3−v3

√
d = (u1−v1

√
d) · (u2−v2

√
d), then u2

3−v2
3d = (u2

1−v2
1d)(u2

2−
v2
2d) = 1

c) |x′| =
√

1 + y′2d ⇒ |x′| + |y′| =
√

1 + y′2d + |y′| is monotonic by |y′|. Let

(x + y
√

d)n < x′ + y′
√

d < (x + y
√

d)n+1 (x > 0, y > 0, x′ > 0, y′ > 0).
Multiplying it by (x − y

√
d)n > 0 we get 1 < a + b

√
d < x + y

√
d, such that

a2−b2d = 1. Since 0 < a+b
√

d, then a−b
√

d > 0. Since a−b
√

d < 1 < a+b
√

d,
then b > 0. Since a−b

√
d > 0, then a > 0. So, since while |x|+ |y| is increasing,

|y| is increasing, |x| + |y|
√

d is increasing, then (x, y) is not a minimal solution.

� A 9. a) See the previous solution.
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b) This statement (and that is xn ≡ 1 (mod k − 1)) can be proved by in-
duction on n.

c) It can be solved as the particular case of the next problem: 1 = x2 − ( b2

4 −
− 1)y2 = (x + b

2y)2 − b(x + b
2y)y + y2

� A 10. Consider the minimal solution and prove that every other solution can
be constructed as the iteration of

� A 11. This can be proved by induction of n.

� A 12. This can be proved by induction of l.

� A 13. This can be proved by using the previous problem (since αkm(b)
divides on αm(b), α4m−1(b) = α2m−1(b)(α2m(b) − α2m−2(b)) and α2m(b) =
αm(b)(αm+1(b) − αm−1(b))).

� A 14. This can be proved by induction on n.

� A 15. No comments

� A 16. It is obvious that αn(b)(amod v) = αn(w)(amod v) and n(amod u) =
αn(w)(amod u). Therefore, since v > 2αk(b) > 2αn(b) and u > 2k > 2n, then
we get the statement we need

� A 17. No comments

� A 18. The inequality k 6 αk(b) can be proved by induction on k

� A 19. No comments

� A 20. This can be proved by induction on k

� A 21. This can be proved by induction on n

� A 22.
(bn+4)c

(n−1)c >
αc+1(bn+4)

αc+1(n) >
(bn+3)c

nc . The left and right parts of this

inequality tend to bc.

� A 23. No comments

� B 1. c =
[

a
bk−1

]

(mod bk)

� B 2. a) b = 2n, a = (2n + 1)n

b)

� B 3. p is prime if and only if then GCD(p, (p − 1)!) = 1

� B 4. (x0 + 1)(1 − D(x0, x1, . . . , xm)2) − 1 > 0 if and only if then 1 −
D(x0, x1, . . . , xm)2 > 0, i.e. D(x0, x1, . . . , xm) = 0. So, a = (x0 +1)(1−0)−1 =
x0.

� B 5. It follows from the two previous problems
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� B 6. a) The first addendum in this sum equals to the number of the factors
divisible by p, the second — by p2 etc.

b)
∑

(
[

m+n
pk

]

−
[

m
pk

]

−
[

n
pk

]

) is equal to the demanded number.

� B 7.
(

xnpn−1+...+x1p+x0

ynpn−1+...+y1p+y0

)

divides on p if and only if then there exists i, such
that xi < yi.

� B 8. a < e · pn
−1

p−1

� B 9. (ynbn−1
1 + . . .+ y1b1 + y0)− (ynbn−1

2 + . . .+ y1b2 + y0) ≡ 0 (mod b2− b1)
(since bk

1 − bk
2 = (b1 − b2)(b

k−1
1 + bk−2

1 b2 + . . . + bk−1
2 ))

� B 10. a1 = a2 (mod b2 − b1) (since a1 < bn
1 < b2 − b1)
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