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As it was recently discovered, sometimes it makes sense to consider objects that are
as non-convex as possible. For instance, to embed planar graphs in the plane such that
the tiles do not look like convex polygons.

This helps to solve a series of problems which seemed to be independent: A.D.Alexan-
drov’s problem on uniqueness of convex surfaces, carpenter’s rule problem, some algo-
rithmic problems on graphs embeddings...

Many problems are still to be solved. For instance, the problem N 17. Any progress
in this direction would be of a great interest.

Here is the most popular problem.

Carpenter’s rule problem. It was formulated in 1970 by the leading authority in
the rigidity theory R. Connelly.

A carpenter’s rule is a non-crossing broken line in the plane with a finite number
of edges. It should be considered as a so-called linkage or a bar-and-join mechanism,
i.e., a collection of rigid bars (line segments) that are hinged together at the endpoints
(vertices) so that they can rotate with respect to one another.

An isotopy of a carpenter’s rule is its continuous movement in the plane which avoids
self-intersections and preserves the edges lengths.

Is each carpenter’s rule straightable in the plane (the self-intersections should be
avoided during the straightening)? (See Fig. 1)

Although the carpenter’s rule problem looks like an olympiad one, it has no elemen-
tary solution (the problem has been open for 30 years).

−→

Figure 1. Straightening of a carpenter’s rule
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(1) Carpenter’s rule problem in the 3-dimensional space.
Is each non-crossing broken line straightable in R

3?
(Mostly probably you will find a solution, but a detailed proof would need

some advanced knowledge.)

Polygons in the plane and in the sphere. A great semicircle in the sphere is the
intersection of the sphere with a plane passing through its center.

A polygon is a non-crossing closed broken line (its edges are line segments in the
plane or the segments of great circles in the sphere) taken together with a bounded
part of the plane (or the sphere) bounded by the broken line.

A polygon can be non-convex. Some of its angles can be greater than π. Such angles
are called non-convex. The angles smaller than π are called convex.

(2) Does there exist a polygon in the plane with exactly two convex angles?
(3) (A simple but a very important problem. To be used in the sequel.) Draw a

4-gon in the sphere with exactly two convex angles.

Pointed graphs. A graph in the plane or in the sphere is called pointed if

• all its edges are line segments (for a graph in the plane) and segments of great
circles (for a graph in the sphere);

• it is non-crossing (its edges have no intersections);
• (pointed property) every vertex is incident to an angle greater than π ( Fig. 2.);
• its vertices are in generic position.

A graph is called trivalent if each its vertex has exactly three adjacent edges.

(4) Draw a pointed trivalent graph in the plane.
(5) Does there exist a pointed graph in the sphere of radius 1 such that the area of

each tile is smaller than 1/10 and all its edges are shorter than 1/10?

Maximal pointed graphs. A graph in the plane or in the sphere is called maximal

pointed if it is impossible to add a new edge (without adding new vertices) preserving
the pointed property.

(6) Draw a maximal pointed graph with 12 vertices in the plane. The vertices must
not lie in convex position (i.e. they shouldn’t serve as vertices of some convex
polygon).

(7) Prove the following two properties of a maximal pointed graph in the plane.
1. There is a closed broken line consisting of some edges of the graph and

bounding a convex polygon M . All vertices of the graph lie in M .
2. Each of the bounded tiles has exactly 3 convex angles.

Figure 2. Part of a pointed graph
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Figure 3.

Euler formula. For a connected graph in the plane or in the sphere, we have

V − E + F = 2 .

Here V is the number of vertices, E is the number of edges, F is the number of tiles
(for a graph in the plane, the unbounded tile is also taken into account).

(8) Let Γ be a maximal pointed graph in the plane. Prove that

E = 2V − 3 .

(9) Draw an example of a pointedgraph in the sphere such that
a) E = 2V − 2.
b) E = 2V + 2007.

(10) a) Can the graph 1 (Fig. 3) be redrawn in the plane as a pointed graph? (”To
redraw” means to construct another graph with another vertices (and possibly
with another edge lengthes), but preserving the vertices-edges correspondence.

b) Can the graph 1 (Fig. 3) be redrawn in the plane as a pointed graph such
that the unbounded tile is a complement of a triangle?

c) Can the graph 2 (Fig. 3) be redrawn in the plane as a pointed graph?

Problems presented after semifinal

Trivalent pointed graphs. A pointed trivalent graph admits a proper coloring if
each its edge can be colored either red or blue such that at each of its vertices the
graph looks like as is depicted in Fig. 2 (two side edges are of the same color, whereas
the middle edge is of the other color).

(11) Does there exist a properly colored trivalent pointed graph in the plane?

Figure 4. Proper coloring Figure 5. Part of a properly colored graph
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α

Figure 6.

(12) Does there exist a trivalent properly colored pointed graph in the sphere?
a) without additional restrictions?
b) whose edges are shorter than π?
c) whose edges are shorter than π/100?

(13) Let Γ be a trivalent properly colored pointed graph in the sphere. For a tile
α denote by n(α) the number of color changes when going along the boundary
of α (for instance, for the tile in Fig. 6, we have n(α) = 4).

We consider such graphs that n(α) = 0 holds for no tile.
a) (A joke) Does there exist a graph and a tile such that n(α) = 2007 ?
b) (Not a joke at all) Does there exist a graph and a tile such that n(α) = 2?

(14) Let Γ be a trivalent pointed graph in the sphere with a proper coloring. Let
N(Γ) be the number of tiles such that n(α) = 2.

Prove that N(Γ) ≥ 4.
(15) Draw a trivalent properly colored pointed graph in the sphere such that its

edges are shorter than π and N(Γ) = 4, 6, 8, 10...
(16) Draw a trivalent properly colored pointed graph in the sphere such that its

edges are shorter than π and N(Γ) = 5.
(17) Given a finite set of points in the sphere, under what condition it is the set of

vertices of some trivalent pointed properly colored graph?
(Try to find a non-trivial necessary or sufficient condition)

Non-isotopic linkages. Let a graph be represented by a linkage (a bar-and-join mech-
anism) in the plane or in the sphere in two different ways Γ1 and Γ2.

We say that the position Γ1 is isotopic to Γ2 if Γ1 can be pulled to the position Γ2

without self-intersections. The edges lengths must not change during such a movement.

(18) Draw a linkage with two non-isotopic positions.

(19) A cool example (E. Demain)
Redraw the graph (Fig. 7) in the plane in two non-isotopic ways. The spider

must have equal legs. (I.e., the upper parts of the legs must be of the same
length, the parts from knees to the feet must be of the same length as well, and
the feet must be equal.)

(20) Find two non-isotopic positions of four great semicircles in the sphere. (In
other words, the spherical linkage in question consists of 4 disconnected bars of
length π.)
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Figure 7.


