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Introduction.

In this note we sketch an elementary proof of the following result concerning constructibility
of regular polygons.

The Gauss Theorem. A calculator (calculating with absolute precision) has operations

1, +, −, ×, : and
√

(and infinite memory). If
n = 2αp1 . . . pl,

where p1, . . . , pl are distinct primes of the form 22s

+ 1, then the number cos
2π

n
is calculable at

this calculator.

In order to make the above Gauss Theorem (and the main idea of the Galois theory) less
accessible, they are usually explained in terms of ’fields extensions’ and ’Galois groups’. The
proof sketched below is elementary and does not use these terms (it does not even use the term
’group’ !). However, the idea presented is one of the main ideas of the Galois theory (’group and
rule’, or ’unite and rule’). The proof of the constructibility is implicitly contained in the Gauss
papers and is explicitly known in (at least USSR math circles) folklore.

Steps of the proof are presented as problems marked with bold numbers. If the statement of
a problem is an assertion, then the problem is to prove this assertion.

Constructions by compass and ruler.

A. Using segments of length a and b construct (from now on: by means of compass and ruler)

segments of length a + b, a − b, ab/c,
√

ab.

A real number is called a quadratic irrationality or calculable, if we can calculate this number
using our calculator. For example, the numbers

1 +
√

2, 4
√

2 =

√√
2,

√

2
√

3,
√

2 +
√

3,

√

1 +
√

2,
1

1 +
√

2
and cos 3◦

are calculable. This is not evident for the last two numbers.

B. Every calculable number is constructible.

This result is a corollary of A. It shows that if the number cos 2π
n

is calculable then the regular
n-gon is constructible.

C*. Main theorem of the theory of geometric constructions. Every constructible number is
calculable.

From this result it follows that if we cannot calculate the number cos 2π
n , then we cannot

construct the regular n-gon.

D. If a complex number z is complex-calculable (the definition is analogous with only one
distinction: the calculator gives two square roots of a complex number), then the real part and
the imaginary part of z are calculable.

E. If the regular mn-gon is constructible, then the regular m-gon is constructible.
1
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F. The regular triangle and the regular pentagon are constructible. Or, equivalently, cos 2π
3

and cos 2π
5

are calculable.

G. The regular 120-gon is constructible. Or, equivalently, the angle 3◦ is constructible. The
following problems are hints.

H. If the regular n-gon is constructible, then the regular 2n-gon is constructible.

I. If the regular n-gon and m-gon are constructible and GCD(m, n) = 1, then the regular
mn-gon is constructible.

Hint to problem C. Consider all possible cases of construction of new objects (points, lines,
circles) and prove that the coordinates of all the constructed points and the coefficients of
equations of all the constructed lines and circles are quadratic irrationals.

Hint to problem D. If
√

a + bi = u+ vi, then u, v are expressed by quadratic radicals of a and
b.

Hint to problem H. Bisect the angle or apply the half angle formula.

Hint to problem I. Since GCD(m, n) = 1, it follows that there exist integers a, b such that
am + bn = 1.

The constructibility in the Gauss theorem.

It is not difficult to prove the constructibility in the Gauss theorem for n ≤ 16.

Proof of the constructibility in the Gauss theorem for n = 5. It suffices to calculate the number
e = cos 2π

5
+i sin 2π

5
. We shall construct some functions of e. We know that e+e2 +e3 +e4 = −1.

It is easy to see that (e + e4)(e2 + e3) = e + e2 + e3 + e4 = −1. Denote A0 := e + e4 and
A1 := e2 + e3. Then A0 and A1 are roots of the equation t2 + t − 1 = 0 by the Vieta theorem.
Hence these numbers are calculable. Since e · e4 = 1, the numbers e and e4 are roots of the
equation t2 − A0t + 1 = 0 by the Vieta theorem. Therefore we can calculate e (and e4).

1. If 2m + 1 is a prime then m is a power of 2.

Idea of proof of the constructibility in the Gauss theorem. It suffices to prove the Gauss
Theorem for n = 2m + 1 a prime (then m is necessarily a power of 2). It suffices to calculate

e = cos
2π

n
+ i sin

2π

n
.

First it would be good to split the sum

e + e2 + · · · + en−1 = −1

into two summands A0 and A1 whose product is calculable (or, in other words, to group the roots
of the equation

1 + e + e2 + · · ·+ en−1 = 0

in a clever way). Then A0 and A1 would be calculable by the Vieta Theorem.
Next it would be good to split the sum A0 into two summands A00 and A01 whose product

is calculable, and analogously split A1 = A10 + A11. And so on, until we calculate A0...0 = e.
It is however quite non-trivial to find the necessary splittings.

Primitive Root Theorem. For each prime p = 2m + 1 there exists an integer g such that the
residues modulo p of g1, g2, g3 . . . , g2m

are distinct.

Construction of necessary splittings is given in problems 3a, 4a and 5a below.
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2. Proof of the Primitive Root Theorem. Suppose that p is a prime and a is not divisible by
p.

(a) Suppose that k is the smallest positive integer such that ak ≡ 1 (p). Then p−1 is divisible
by k. (Use the Fermat Little Theorem.)

(b) For every integers n and a the congruence xn ≡ a (p) has at most n solutions.
(c) If p − 1 is divisible by d then the congruence xd ≡ 1 (p) has exactly d solutions.
(d) Prove the Primitive Root Theorem for p = 2m + 1. (Only this case is necessary for the

Gauss theorem.)
(e)* Prove the Primitive Root Theorem for p = 2m · 3n + 1.
(f)* Prove the Primitive Root Theorem for arbitrary prime p.
(g)* Is it true that 3 is a primitive root modulo p for every prime of the form p = 2m + 1?

From now on let g be a primitive root modulo a prime p = 2m + 1.

3. (a) Set

A0 := eg2

+ eg4

+ eg6

+ · · ·+ eg2m

and A1 := eg1

+ eg3

+ eg5

+ · · · + eg2m
−1

.

Prove that A0A1 = −p−1
4 .

The following problems are hints.
(b) gk + gl ≡ 0 (p) iff k − l ≡ p−1

2 (p − 1).
(c) We have

A0A1 =
2m

∑

s=1

esα(s),

where α(s) is the number of solutions (k, l) (in residues modulo p − 1) of the congruence

g2k + g2l+1 ≡ s (p).

(d) α(s) = α(gs).
(e) α(s) does not depend on s.

4. (a) Set

A00 := eg4

+ eg8

+ eg12 + · · ·+ eg2m

and

A01 := eg2

+ eg6

+ eg10

+ · · · + eg2m
−2

.

Prove that A00A01 = sA0 + tA1 for certain integers s and t (in fact, s + t = p−1
8

).
(b) (hint) The congruence

g4k + g4l+2 ≡ s (p)

has the same number of solutions (k, l) (in residues modulo p − 1) as the congruence

g4k + g4l+2 ≡ sg2 (p).

We have ga + gb ≡ 0 (p) if and only if a − b ≡ 2m−1 (p − 1).

5. (a) Set

A10 := eg1

+ eg5

+ eg9

+ · · ·+ eg2m
−3

and

A11 := eg3

+ eg7

+ eg11

+ · · · + eg2m
−1

.

Prove that A10A11 = uA0 + vA1 for certain integers u and v (in fact, u + v = p−1
8

).
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(b) cos 2π
17 is calculable.

(c) Complete the proof of possibility in the Gauss theorem.

6. Find an explicit expression involving square roots for

(a) cos
2π

17
. (b)* cos

2π

257
. (c)* cos

2π

65537
.

Using the above method and computer, this problem is easily solvable (in spite of the story
from J. Littlewood, Mathematical Miscellany).

Remark. There is another proof of constructibility, like the previous one, but without use
of complex numbers. For example, consider the regular 17-gon. Set ak = cos(2πk/17). Then
ak = a17−k, 2akal = ak+l + ak−l and a1 + a2 + a3 + · · · + a8 = −1/2. First calculate
a1 + a2 + a4 + a8 and a3 + a5 + a6 + a7. Then calculate a1 + a4, a2 + a8, a3 + a5 and a6 + a7.
Finally calculate a1.

Hints and solutions to some problems concerning constructability.

Hint to problem 1. If n is odd, then 2kn + 1 is divisible by 2k + 1.

Hint to problem 2b. Let us prove the following more general statement: a polynomial of
degree n cannot have more than n roots in Zp. Here by a polynomial we mean the collection of
coefficients but not the function.

Assume that a polynomial P (x) of degree n has in Zp different roots x1, . . . , xn, xn+1. Rep-
resent P (x) as

P (x) = bn(x − x1) . . . (x − xn) + bn−1(x − x1) . . . (x − xn−1) + · · ·+ b1(x − x1) + b0

(’the Newton interpolation’). Put in the congruence P (x) ≡ 0 (p) residues x = x1, . . . , xn, xn+1

in this order. We obtain b0 ≡ b1 ≡ · · · ≡ bn−1 ≡ bn ≡ 0 (p).
The same solution can be presented in the following way. Let P be a polynomial. Then

polynomial P −P (a) is divisible by x−a, i.e. P −P (a) = (x−a)Q for some polynomial Q such
that deg Q < deg P . Since P (a) = 0, it follows that P = (x − a)Q for some polynomial Q of
degree less than deg P . Now the required statement can be proved by induction on the degree
of the polynomial P .

Hint to problem 2c. Obviously, polynomial xp−1 − 1 in Zp has exactly p − 1 roots and is
divisible by xd − 1. Prove that if a polynomial of degree a have a roots and is divisible by a
polynomial of degree b, then the polynomial of degree b has exactly b roots.

Hint to problem 2d. If there are no primitive roots, then by problem 2a the congruence

x2m−1 ≡ 1 (p) has p − 1 = 2m > 2m−1 solutions.

Hint to problem 2ef. Similary to 2d.

Remark to problem 2f. It is easy to deduce from the existence of a primitive root that for
p − 1 = pa1

1 . . . pak

k the number of primitive roots is (p − 1)(1 − 1
p1

) . . . (1 − 1
pk

) = ϕ(p − 1).

Hint to problem 3c. Open the parenthesis and group the equal elements of the sum.

Hint to problem 3d. If (k, l) is a solution of the congruence g2k + g2l+1 ≡ s (p), then (l, k +1)
is a solution of the congruence g2k + g2l+1 ≡ gs (p).

If (k, l) is a solution of the congruence g2k + g2l+1 ≡ gs (p), then (l− 1, k) is a solution of the
congruence g2k + g2l+1 ≡ s (p).

Proof of the impossibility in the Gauss theorem.

Before the proofs of the the Gauss theorem some of their ideas are demonstrated one by one
on the easiest examples (problems 1, 2c and 3). However, these examples give the solution of
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classical antique problems of the doubling of a cube and the trisection of an angle, which were
awaiting for their solutions nearly 2000 years. The first proof of the impossibility in the Gauss
theorem is sketched in problems 2ab, 4-7. Seemingly different (but in essence the same) proofs
are sketched in problems 8-11 (we use 4, but not use 6), 12 and 13-16. The second proof is the
most close to ideas of Gauss.

1. There are no rational numbers a, b, c, d such that 3
√

2 =

(a) a +
√

b; (b) a −
√

b; (c)
1

a +
√

b
; (d) a +

√
b +

√
c; (e) a +

√
b +

√
c +

√
bc;

(f) a +
√

b +
√

c; (g) a +
√

b +
√

c +
√

d.

2. (a) Delete the button ’:’ from (the complex analogue of) the calculator defined in the
Gauss theorem, but allow to use all rational numbers. Then the set of numbers realizable using
the new calculator will remain the same.

(b) Number A is constructible if and only if there are positive r ∈ Z and a1, . . . ar ∈ R such
that

Q = Q1 ⊂ Q2 ⊂ Q3 ⊂ . . . ⊂ Qr ⊂ Qr+1 ⊃ A, where ak ∈ Qk,
√

ak 6∈ Qk,

Qk+1 = Qk[
√

ak] := {α + β
√

ak | α, β ∈ Qk} for each k = 1, ..., r − 1.

Such a sequence is called a sequence of quadratic extensions (this term is considered as one word,
we do not use the term ’quadratic extension’ alone).

(c) 3
√

2 is not constructible. (Hence the doubling of a cube by ruler and compass is impossi-
ble.)

3. (a) Number cos(2π/9) is a root of the cubic equation 8x3 − 6x + 1 = 0.

(b) There are no rational numbers a and b such that cos(2π/9) = a +
√

b.
(c) Number cos(2π/9) is not constructible (hence the trisection of angle π/3 by ruler and

compass is impossible and the regular 9-angled polygon is not constructible).
(d) The roots of a cubic equation with rational coefficients are constructible if and only if one

of these roots is rational.

4. Conjugation lemma. Using the notation of 2b define the conjugation map · : Qk[
√

a] →
Qk[

√
a] by the following formula: x + y

√
a = x − y

√
a. Then

(a) This map is well-defined.
(b) z + w = z + w, zw = zw and z = z ⇔ z = x + 0

√
a ∈ Qk−1.

(c) If z ∈ Qk[
√

a] is a root of a polynomial P with rational coefficients, then P (z) = 0.
(Compare with the lemma on complex roots of polynomials with real coefficients.)

5. (a) Prove that polynomial Φ(x) := x12 + x11 + · · ·+ x + 1 is irreducible over Q.
Hint: if you have difficulties use the Gauss lemma and the Eisenstein criterion (see below).
(b) If number e = cos(2π/13) + i sin(2π/13) is constructible, then there exists a sequence

Q = Q1 ⊂ Q2 ⊂ . . . ⊂ Qk ⊂ Qk+1 of quadratic extensions such that Φ(x) is reducible over Qk+1

and is irreducible over Qk.
(c) If Φ is divisible by polynomial P with coefficients in Qk+1, then Φ is divisible by conjugate

(relatively to Qk) polynomial P .
(d) The decomposition of polynomial Φ(x) over Qk+1 into irreducible factors is divided into

pairs of conjugate (relatively to Qk) factors.
(e) For each of these factors there exists a sequence analogous to (b) but possibly has another

n.
(f) Number cos(2π/13) is not constructible.
(g) Number cos(2π/p) is not constructible for p a prime, p 6= 2m + 1.
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6. (a) The Gauss lemma. If a polynomial with integer coefficients is irreducible over Z, then
it is irreducible over Q [Pr].

(b) The Eisenstein criterion. Let p be a prime. If the leading coefficient of a polynomial with
integer coefficients is not divisible by p, other coefficients are divisible by p and the constant
term is not divisible by p2, then this polynomial is irreducible over Z [Pr].

7. (a) Polynomial Φ(x) = 1 + x17 + x34 + x51 + · · · + x272 is irreducible over Q.
Hint: use the Gauss lemma and the Eisenstein criterion.
(b) Number cos(2π/289) is not constructible.
(c) Prove the impossibility in the Gauss theorem.

8. Number cos(2π/7) is not constructible (hence the regular heptagon is not constructible).

9. Let n = 4k + 3 be a prime. Denote fs = es + e−s. The least length of a minimal sequence
from problem 2b is called a rank of α.

(a) For each k number fk
1 + fk

2 + · · ·+ fk
(p−1)/2 is rational.

(b) After openning the parenthesis and grouping the equal elements in the equation (x −
f1)(x − f2) . . . (x − f(p−1)/2) we obtain a polynomial with rational coefficients.

(c) Ranks of numbers e, e2, . . . , ep−1 are equal.
(d) Ranks of numbers f1, . . . , f(p−1)/2 are equal.
(e) Number cos(2π/n) is not constructible.

10. Denote e = cos(2π/13) + i sin(2π/13), g = 2 is a primitive root modulo 13,

A0 = eg0

+ eg3

+ eg6

+ eg9

, A1 = eg1

+ eg4

+ eg7

+ eg10

and A2 = eg2

+ eg5

+ eg8

+ eg11

.

(a) A2
0 = 4 + A1 + 2A2, A2

1 = 4 + A2 + 2A0 and A2
2 = 4 + A0 + 2A1.

(b) Numbers A0, A1, A2 are roots of an irreducible cubic equation with rational coefficients.
(c) Numbers A0, A1, A2 have the same rank.
(d) Number cos(2π/13) is not constructible.

11. Number cos(2π/p) is not constructible for
(a) p = 3 · 2k + 1 a prime.
(b) p a prime, p 6= 2m + 1.
(c) p = 289.
(d) number p that is not a product of a power of 2 and distinct prime numbers of the form

2m + 1.

12. Consider polynomial with given constructible number as a root. Prove that the minimal
degree of such a polynomial is a power of two. Then prove the impossibility in the Gauss
theorem.

The idea of another proof of the impossibility in the Gauss theorem is expressed by the notions
of a field and the dimension of a field.

13. Consider a subset of the set C of complex numbers. This subset is called a (numerical)
field if it is closed under addition, subtraction, multiplication and division.

(a) The following sets are fields: Q, the set of constructible numbers, the set of real numbers,

Q[
√

2] := {α + β
√

2 | α, β ∈ Q}, each Qk in a sequence of quadratic extensions and

Q[e] := {α0 + α1e + α2e
2 + α3e

3 + · · · + α12e
12 | αi ∈ Q}, where e = cos

2π

13
+ i sin

2π

13
.
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(b) Any field contains field Q.

(c) Any field that contains
√

2 should contain Q[
√

2].
(d) Any field that contains e should contain Q[e].

14. The dimension dim F of a field F is the least k for which there exist

b2, b3 . . . , bk ∈ F, such that F = {α1 + α2b2 + α3b3 + · · ·+ αkbk | αi ∈ Q},

if such k exists.
(a) dim Q = 1.

(b) dim Q[
√

2] = 2.
(c) In a sequence of quadratic extensions dim Qk = 2 dimQk−1 for k ≥ 1.
(d) In a sequence of quadratic extensions dim Qk = 2k−1.
(e) If G ⊂ F are fields, then dimF is divisible by dimG.

15. (a) dim Q[cos
2π

13
+ i sin

2π

13
] ≤ 12.

(b) If dim Q[cos
2π

13
+ i sin

2π

13
] < 12, then P (e) = 0 for some polynomial P with rational

coefficients, where the degree of P is less than 12.
(c) Use the previous assertions to prove that number cos(2π/13) is not constructible.

16. (a) dim Q[cos
2π

289
+ i sin

2π

289
] = 272.

(b) Use the previous assertions to prove that number cos(2π/289) is not constructible.
(c) Prove the impossibility in the Gauss theorem.

17. (a) Any constructible number is algebraic, i.e. it is a root of an polynomial with ra-
tional coefficients. (This fact together with the transcendence of

√
π implies the impossibility

of squaring the circle by compass and ruler. The transcendence of
√

π is an implication of the
transcendence of π that is proved by Lindemann in 1883.)

(b) Let P be a polynomial with constructible roots. If P has rational coefficients and has an
odd degree, then one of its roots is rational.

(c)* The roots of a polynomial of degree 4 with rational coefficients are constructible if and
only if the resolution cubic equation [Ko, Pr] has a rational root.

Hints and solutions to some problems concerning impossibility.

Hint to problem 1c. Multiply by conjugate.

Hint to problem 2a. Induction on the number of operations of the calculator, which are
necessary to construct given number; use multiplication by conjugate.

Hint to problem 2b. It is a simple corollary of problem 2a.

Solution of problem 2c. Suppose that 3
√

2 is constructible. Then there exists a sequence of
quadratic extensions

Q = Q1 ⊂ Q2 ⊂ Q3 ⊂ . . . ⊂ Qr−1 ⊂ Qr such that 3
√

2 ∈ Qr \ Qr−1.

Since 3
√

2 6∈ Q, it follows that r ≥ 2. Then

3
√

2 = α + β
√

a, where α, β, a ∈ Qr−1,
√

a 6∈ Qr−1 and β 6= 0.
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Then
2 = (3

√
2)3 = (α3 + 3αβ2a) + (3α2β + β3a)

√
a = u + v

√
a.

Since 2 ∈ Q ⊂ Qr−1, it follows that 2 − u ∈ Qr−1. From

v
√

a = 2 − u and v ∈ Qr−1 we obtain 0 = v = 3α2β + β3a.

Since 3α2 + β2a > 0, it follows that β = 0. A contradiction.

Hint to problem 3a. Express cos 3α by cos α.

Hint to problem 3b. If cos(2π/9) = a+
√

b, then a−
√

b is also a root of equation 8x3−6x+1 = 0.

Hence by the by the Vieta theorem the third root is equal to −(a +
√

b)− (a−
√

b) = −2a ∈ Q.

Solution of problem 3c. It is a corollary of 3a and 3d.

Proof of the theorem 3d for cubic equations all whose three roots are real (this case is sufficient
to the impossibility of construction of regular 9-angled polygon). The part ’if’ is obvious. Let us
prove the ’only if’ part. Suppose the contrary, i.e. that at least one of the roots is constructible.
For each constructible root z consider the minimal sequence of quadratic extensions

Q = Q1 ⊂ Q2 ⊂ Q3 ⊂ . . . ⊂ Qr−1 ⊂ Qr, for which z1 ∈ Qr \ Qr−1.

Consider the root z = z1 with the least length l of minimal sequence.
Since the equation has no rational roots, it follows that l ≥ 2. Hence,

z1 = α + β
√

a, where α, β, a ∈ Ql−1,
√

a 6∈ Qr−1 and β 6= 0.

Hence number z1 = α − β
√

a is also a root of the considered equation (by the Conjugation
lemma). Since β 6= 0, it follows that α − β

√
a 6= α + β

√
a, i. e. z1 6= z1. Denote z2 := z1. By

the Vieta formula for our equation we have:

z1 + z2 + z3 = (α + β
√

a) + (α − β
√

a) + z3 = 2α + z3 ∈ Q, hence z3 ∈ Ql−1.

Therefore for the root z3 there exists a sequence of quadratic extensions whose length is less
than that for the root z1. A contradiction. �

Hint to problem 5a. Apply the Eisenstein criterion to ((x+1)13−1)/x and the Gauss lemma.

Solution of problem 5b. Consider a sequence of quadratic extensions Q = Q1 ⊂ Q2 ⊂ . . . ⊂
Qr−1 ⊂ Qr ⊃ e. Notice that polynomial Φ is reducible over Qr (because Φ has e as a root).
Hence there exists l for which polynomial Φ is reducible over Ql+1. Let k be the minimal
such l. From problem 5a it follows that k ≥ 1. Now it is easy to see that the sequence
Q = Q1 ⊂ Q2 ⊂ . . . ⊂ Qk ⊂ Qk+1 is the required.

Hint to problem 5c. Conjugate relatively to Qk the equation Φ(x) = P (x)R(x).

Hint to problem 5d. It is sufficient to prove that if the polynomial P with coefficients in Qk+1

divides Φ, then P and P are relatively prime. For this prove that GCD(P, P ) has the coefficients
in Qk and use the irreducibility of polynomial Φ in Qk.

Solution of problem 5e. Analogously to problem 5b.

Hint to problem 5f. Prove that the decomposition of polynomial Φ(x) constructed in problem
5d has exactly two factors (use the fact that if the coefficients of polynomial P are in Qk+1, then
the coefficients of polynomial PP are in Qk). The same is true also for decompositions of new
factors and so on. Using this prove that the degree of polynomial Φ(x) should be a power of
two.
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Hint to problem 5g. Analogously to problem 5f.

Hint to problem 6b. Suppose the contrary and apply indefinite coefficient method.

Hint to problem 7a. Apply the Eisenstein criterion to Φ(x + 1) and the Gauss lemma.

Hint to problem 7b. Analogously to problem 5 prove that if number cos
2π

289
is constructible,

then the degree of polynomial Φ(x) should be a power of two. A contradiction.

Solution of problem 8. Consider complex number e = cos(2π/7) + i sin(2π/7). Since e 6= 1, it
follows that number e is a root of an equation e6 + e5 + e4 + e3 + e2 + e + 1 = 0. Let us divide
both parts of the equation by e3. Denote

f := e + e−1, then e2 + e−2 = f2 − 2 and e3 + e−3 = f(e2 + e−2 − 1).

We have a cubic equation

f(f2 − 3) + (f2 − 2) + f + 1 = 0, i.e. f3 + f2 − 2f − 1 = 0.

The candidates for rational roots of this equation f = ±1 are easily rejected. Using theorem 3d
on cubic equations one can observe that number f = e+ e−1 is not constructible. Hence e is not
constructible (explain why).

Hint to problem 9a. Induction on k.

Hint to problem 9b. It is a corollary of problem 9a and the fact that every symmetric poly-
nomial of variables f1, f2, . . . , f(p−1)/2 is rationaly expressed via polynomials of type fk

1 + fk
2 +

· · · + fk
(p−1)/2.

Solution of problem 9c. Since for each s, t ∈ {1, 2, . . . , p−1} there exists k such that es = (et)k,
it follows that ranks of numbers e, e2, . . . , ep−1 are the same.

Solution of problem 9d. Since es + e−s is rationaly expressed via e + e−1, it follows that for
each s, t ∈ {1, 2, . . . , p − 1} number es + e−s is rationaly expressed via et + e−t (Analogously to
problem 8). Hence ranks of numbers f1, . . . , f(p−1)/2 are the same.

(Observe that rk(e + e−1) = rke − 1.)

Solution of problem 9e. Let r := rkfs. Hence for some sequence of quadratic extensions

fs = αs + βs

√
a, where αs, βs, a ∈ Qr−1,

√
a 6∈ Qr−1 and βs 6= 0.

Hence number fs = αs − βs
√

a is also a root of considered polynomial (by the Conjugation
lemma). Since

βs 6= 0, it follows that αs − βs

√
a 6= αs + βs

√
a, i. e. fs 6= fs.

So roots f1, . . . , f(p−1)/2 are split into pairs of conjugates. Hence number (p − 1)/2 is even. A
contradiction.

Solution of problem 10a. We prove the first formula (the others are proved analogously).
Notice that g6 = −1. Hence

A2
0 = ((eg0

+ e−g0

) + (eg3

+ e−g3

))2 =
(∗)

= 2 + eg1

+ e−g1

+ 2 + eg4

+ e−g4

+ 2(eg0

+ eg6

)(eg3

+ eg9

) = 4 + A1 + 2A2.
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The last equation holds because

(eg0

+ eg6

)(eg3

+ eg9

) = eg0+g3

+ eg3+g6

+ eg6+g9

+ eg9+g0

= eg0+g3

A0 =
(∗)

eg8

A0 = A2.

(Equations marked with (∗) hold because g = 2.)

Hint to problem 10b. Prove that A0 + A1 + A2, A2
0 + A2

1 + A2
2, A3

0 + A3
1 + A3

2 are rational.

Hint to problem 10с. Using problem 10a and A0 + A1 + A2 = −1 prove that Ai is rationaly
expressed via each Aj.

Hint to problem 10d. Solution is obtained from problems 10b и 10c analogously to problem
9e.

There is another solution that does not use 10c. Suppose that number A0 has rank r. Conju-
gate A0 relatively to Qr−1. The obtained number will be one of the numbers Ai (explain why).
Now one can observe that Ai’s are split into pairs of conjugates. Hence the number of Ai’s is
even. A contradiction.

Hint to problem 11а. Analogously to problem 10.

Hint to problem 11b. Suppose that for p = 2kr +1 the number cos
2π

p
is constructible (where

r > 1 is odd). Deduce that numbers

Ai = egi

+ egr+i

+ · · · + eg(2k
−1)r+i

, 0 ≤ i ≤ r − 1

have the same rank and are the roots of polynomial with rational coefficients and degree r.

Hint to problem 11c. Consider numbers

A0 = eg0

+ eg17

+ · · ·+ eg272

, A1 = eg1

+ eg18

+ · · ·+ eg273

, A16 = eg16

+ eg33

+ · · ·+ eg288

.

Hint to problem 12. Analogously to problem 5.

Hint to problem 14c. Prove that

Qk = {α1 + α2b | α1, α2 ∈ Qk−1} for each b ∈ Qk − Qk−1.

Hint to problem 14d. It is a corollary of problems 14a and 14c.

Hint to problem 14e. The minimal k for which there exist

b1, b2, . . . , bk ∈ F such that F = {α1b1 + α2b2 + α3b3 + · · ·+ αkbk | αi ∈ G},

if such k exists, is called the dimension dim(F : G) of the field F over the field G. Prove that
dim F = dimG dim(F : G).

Hint to problem 15b. Prove that there exist rational numbers a0, a1, . . . , a12, not all equal to
0 and such that

a0 + a1e + · · ·+ a11e
11 = 0. (∗)

By definition of dimension there exist b1, . . . , b11 ∈ Q[cos
2π

13
+ i sin

2π

13
] and αkl ∈ Q such that

ej−1 = αj,1b1 + αj,2b2 + · · · + αj,11b11 for j = 1, 2, . . . , 12.
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Substitute these expressions for ei to (∗). Then consider equations stating that coefficients of
b1, . . . , b11 are zeroes. Finally prove that the obtained system of equations has a nonzero rational
solution.

Hint to problem 16a. Analogously to problems 15ab. Use the irreducibility of polynomial
Φ(x) = 1 + x17 + x34 + x51 + · · · + x272.

Hint to problem 17a. Let a=a1 and b=b1 be constructible numbers, P and Q polynomials
with rational coefficients of minimal degree such that a and b are their roots, respectively. Let
a2, . . . , am be all other complex roots of P and b2, . . . , bn all other complex roots of Q. Notice
that

a + b is a root of polynomial P (x − b1) . . . P (x − bn),
a − b is a root of polynomial P (x + b1) . . . P (x + bn),
ab is a root of polynomial P ( x

b1
) . . . P ( x

bn

),
a
b is a root of polynomial P (xb1) . . . P (xbn),√

a is a root of polynomial P (x2).
Now it suffices to prove the lemma.
Lemma. Let R(x, y) be a polynomial in two variables with rational coefficients, b1, b2, . . . , bn

are all complex roots of polynomial Q with rational coefficients. Then a polynomial
R(x, b1)R(x, b2) . . .R(x, bn) with one variable also has rational coefficients.

Solution of problem 17b. Analogously to problems 5bc.


