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Problems

We shall consider the following problem:

Could a product of some consecutive integers be a power of an integer?

In other words we ask whether the equation
x(x + 1)(x + 2) . . . (x + k − 1) = ym (1)

has a solution in positive integers (for each k > 2 and m > 2).
A solution of the problem for any partial case will be accepted as a progression. We recommend to consider the following cases

first.

1 Some partial cases

1.1. k = 2, m = 2.

1.2. k = 2, m is arbitrary.

1.3. k = 3, m = 2.

1.4. k = 3, m is arbitrary.

1.5. k = 4, m = 2.

1.6. k = m.

1.7. k = 8, m = 4.

1.8. k = 8, m = 2.

1.9. k = 4, m is arbitrary.

1.10. k = 5, m = 2.

2 Variations of the question

2.1. Prove that for m = 2 and even k the equation does not have infinitely many solutions (x, y).

2.2. We take 5 consecutive integers, choose 4 of them and multiply. Is it possible the result to be an exact square?

2.3. Prove that the equation x(x + d)(x + 2d) = y2 has infinitely many solutions (x, y, d) in nonnegative integers.

2.4. Prove that for every k 6= 2, 4 a polynom of a form x(x + 1)(x + 2) . . . (x + k − 1) + c, where c is a rational
number, is not a square of a polynom.
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3 Convenient numbers

We call a number k convenient if among each k consecutive positive integers there is at least one which is relatively prime to the
others.

We shall refer to our main equation (1) by the notation (k, m). For example, in the very first problem we spoke about the equation
(2, 2).

3.1. Prove that the equation (k, m) could not have infinitely many solutions for convinient k and m > k.

3.2. Prove that for each convinient k there is a number m0(k), such that for m > m0(k) the equation (k, m) has
no solutions.

3.3. Prove that the equation (k, m) has no solutions for convinient k and m > 2k.

3.4. Prove that the equation (k, m) has no solutions for convinient k and m > k + 2 log2 k.

3.5. Prove that the equation (5, 7) has no solutions.

3.6. Prove that all positive integers less than or equal to 16 are convenient.

3.7. Prove that 17 is not convenient.

3.8. Prove that all positive integers greater than 17 are not convenient.

4 Common properties of solutions

You may apply the following two theorems in your solutions.
Tchebyshev theorem (Bertrand postulate). There are at least two primes between integers n and 2n if n > 5.
Sylvester theorem. There is a prime p > k that divides (n + 1)(n + 2) . . . (n + k) if n > k.

Let us write the factors from left hand side of the equation (k, m) in form

x + i = a
i
zm

i
, 0 6 i 6 k − 1 ,

where integers ai are free of m-th powers, i.e. the power of each prime factor of ai is less than m.

4.1. Prove that x > k for any solution of the equation (k, m).

4.2. Prove that x > km for any solution of the equation (k, m).

4.3. Prove that all prime factors of integers ai are less than k.

4.4. Solve the equation (7, 2).

4.5. Solve the equation (6, 2).

4.6. Let x be a solution of the equation (k, m). Prove that the equality

(x+i1) . . . (x+im−1) = (x+j1) . . . (x+jm−1), where 0 6 i1 6 · · · 6 im−1 6 k−1; 0 6 j1 6 · · · 6 jm−1 6 k−1

is possible only if the sets of indices coincide.

4.7. Prove that all the integers ai are different.

4.8. Let m = 3. Prove that all the pairwise products aiaj , 0 6 i 6 j 6 k − 1, are different.

4.9. Let m = 3. Prove that the fractions of the form
aiaj

aras
, where 0 6 i 6 j 6 k − 1, 0 6 r 6 s 6 k − 1, are not

equal to the cube of rational number (excluding 1).

4.10. Let m = 3, k = 75. Prove that at least 20 integers ai have no prime factors greater than 10.

4.11. Prove that the equation (75, 3) has no solutions.

4.12. Denote by π(k) the number of primes which are less or equal to k. Prove that almost all integers ai are
“small” in the following sense: we can choose k − π(k) of them, such that the product of chosen numbers divides
k!. (You may consider the cases m = 2, 3 only.)

4.13. Let m = 2, Bx(k) = a0a1 . . . ak−1. Prove that Bx(k) >
(

4
3

)k
k! for an arbitrary large k.
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Solutions

The equation under consideration has no solutions at all. So the answer “There are no solutions” will not be
repeated in each solution.

1 Some partial cases

1.1. Follows from the next problem.

1.2. Numbers x and x+1 are relatively prime, thus both must be perfect m-th power. However this is impossible.

1.3. Follows from the next problem.

1.4. Let us denote that numbers x+1 and x(x+2) = (x+1)2−1 are relatively prime. So each of them is a perfect
m-th power. Let x+ 1 = um, then x(x+ 2) = (u2)m − 1 = vm. This is impossible because two perfect m-th powers
differ by more than 1.

1.5. Let us apply an identity x(x + 1)(x + 2)(x + 3) + 1 = (x2 + 3x + 1)2.

1.6. Note that x < y < x+k−1. Then the left hand side of the equation contains a factor y +1, which is relatively
prime with the right hand side.

1.7. Let us multiply factors pairwise (first with last, second with last but one etc.). We get

x(x + 1)(x + 2) . . . (x + 7) = (x2 + 7x)(x2 + 7x + 6)(x2 + 7x + 10)(x2 + 7x + 12) .

Let a = x2 + 7x, we obtain the equation

a(a + 6)(a + 10)(a + 12) = y4 . (2)

Direct calculation ensures us that if a > 10

(a + 6)4 < a(a + 6)(a + 10)(a + 12) < (a + 7)4

(right inequality also follows from Cauchy inequality).

1.8. Let us transform the product of eight consecutive integers to the form (2). Note that a = x2 + 7x is even
number, set a = 2b, y = 2y1 and cancel both sides of the equation by 2. We obtain

b(b + 3)(b + 5)(b + 6) = y2
1 .

Direct calculations ensure us that

(b2 + 7b + 6)2 < b(b + 3)(b + 5)(b + 6) < (b2 + 7b + 7)2 .

It is easy to check because these inequalities are quadratic.

1.9.

1.10. Remark that greatest common divisor of each pair of these numbers is not more than 4. Thus all large prime
factors of y must be contained in the decomposition of x, . . . , x + 4 in even powers. Hence each factor in the left
hand side of the equation must be of one of the forms n2, 2n2, 3n2 or 6n2. Since left hand side of the equation
contains five factors, some two of them have the same form. But the difference between two numbers of the same
form could not be small, hence the equation has no solution.

2 Part 2

2.1. This solution is from [4]. Denote by f(x) the polynomial in the right hand side of equation (1).
Assume that for m = 2, k = 2n equation (1) has infinitely many solutions (xi, yi), where xi → +∞ and

f(xi) = y2
i . Remark that f(x) is not a square of a polynomial, because all its roots have multiplicities 1. Find

a polynomial a(x) of degree n such that deg(f − a2) 6 n − 1. Let r = f − a2, a(xi) = zi. Then zi ∼ xn
i for

i → +∞ (the reader not familiar with the notion of limit could read this sentence as: zi > 0.99xn
i for large i).
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Moreover y2
i − z2

i = r(xi) 6= 0 for large i and at the same time |r(xi)| 6 const · xn−1
i . But on the other hand

|r(xi)| = |y2
i − z2

i | = (yi + zi)|yi − zi| > zi ∼ xn
i , which contradicts to the estimation just obtained.

2.2. An s w e r: Yes, it is possible. 2 · 3 · 4 · 6 = 122.

2.3. First solution. Let x = kd. Then k(k + 1)(k + 2)d3 = y2. Put d = k(k + 1)(k + 2).
Second solution. It uses Pythagorean triples. Let x̄ = x + d. Then the equation will be written in a form

x̄2(x̄2 − d2) = y2. We could take d = 2ab(a2 − b2), x̄ = (a2 + b2)2 as a solution.
Third solution. Note that if (x, y, d) — a solution then for each k the triple (k2x, k3y, k2d) is also a solution.

So to solve the problem it is enough to find one partial solution, for example (1, 35, 24).

2.4. The proof is taken from [4]. Let us denote Pk,c(x) = x(x + 1)(x + 2) . . . (x + k − 1) + c. Suppose that
Pk,c(x) = a(x)2, k = 2n. Then

Pk,c(x + 1) − Pk,c(x) = k(x + 1)(x + 2) . . . (x + k − 1) = a(x + 1)2 − a(x)2 .

Hence
(

a(x + 1) − a(x)
)(

a(x + 1) + a(x)
)

= k(x + 1)(x + 2) . . . (x + k − 1) .

Since the graph of the polynomial y = a(x+1) could be obtained by translation to the left by 1 from the graph
y = a(x), each of n − 1 solutions of the equation a(x + 1) = a(x) lies between a pair of roots of the polynomial
a(x) + a(x + 1) (which have n roots). Hence

a(x + 1) − a(x) = n(x + 2)(x + 4) . . . (x + 2n − 2) ,

a(x + 1) + a(x) = 2(x + 1)(x + 3) . . . (x + 2n − 1) .

Adding these expressions we get

2a(x + 1) = 2(x + 1)(x + 3) . . . (x + 2n − 1) + n(x + 2)(x + 4) . . . (x + 2n − 2) .

And substituting the same changing x by x + 1 we obtain

2a(x + 1) = 2(x + 2)(x + 4) . . . (x + 2n) − n(x + 3)(x + 5) . . . (x + 2n − 1) .

Two obtained expressions contradict to each other. To be ensure this put x = 0 to both and subtract one from
another. We get

(n + 2)
(

1 · 3 · · · (2n − 1)
)

= 3n
(

2 · 4 · · · (2n − 2)
)

,

Here the right hand contains two as a factor with more power than left hand side.

3 Convenient numbers

3.1. Let an integer x + i be relatevely prime with all other factors from the left hand side. Then x + i = um and

(um − k + 1)(um − k + 2) . . . um
6 x(x + 1) . . . (x + k − 1) 6 um(um + 1) . . . (um + k − 1) .

Let us check that if u is large

(uk − 1)m < (um − k + 1)(um − k + 2) . . . um
6 um(um + 1) . . . (um + k − 1) < (uk + 1)m . (3)

If this is true then for large u the inequality uk − 1 < y < uk + 1 fulfils. Obviously that y = uk is not a solution of
the equation, hence the inequality has no solutions if u is large. Thus the equation has only finitely many solutions.

For checking left inequality (3) note than

(uk + 1)m > ukm + mukm−k .

On the other hand

um(um + 1) . . . (um + k − 1) < umk +
k(k − 1)

2
ukm−m

Hence if m > k and u is large we have inequality

um(um + 1) . . . (um + k − 1) < umk +
k(k − 1)

2
ukm−m ∗

< ukm + mukm−k < (uk + 1)m . (4)
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Similarly for left inequality (3) we obtain

(um − k + 1)(um − k + 2) . . . um − (uk − 1)m = mukm−k −
k(k − 1)

2
ukm−m + . . . .

Here the right hand side is a polynomial of u, missed summands have less degree of u, and leading term mukm−k

is positive. Hence this polynomial is positive if u is large. So the inequality we need is obtained.

3.2. Follows from the next point.

3.3. It is enough to prove that if m > 2k the inequality (3) holds. Right inequality (3) is obvious because even if
m > k + 1 the medium inequality (4) mark by asterisk is true.

Let us prove the left one (3). Since

(um − k + 1)(um − k + 2) . . . um > (um − k + 1)k ,

then it is enought to prove
(um − k + 1)k > (uk − 1)m . (5)

for m > 2k.
We would prove the inequality (5) by induction by m. Base, m = 2k

(u2k − k + 1)k > (uk − 1)2k .

Taking the root of degree k-th and expanding we get the obvious inequality 2uk > k. Step of induction. It is
enought to check

(um − k + 1)k(uk − 1) < (um+1 − k + 1)k .

Let us write this inequality in the form

uk − 1 <

(

um+1 − k + 1

um − k + 1

)k

.

This inequality is obvious because the fraction in parenthesis in the right hand side is not less than u
This inequality is obvious since the fraction in parenthesis in the right hand side is not less than u.

3.4. Let an integer z = x+ i be relatively prime with all other factors of the right hand side of the equations. Then
z = x + i = um and

(um − k + 1)k < (z − k + 1) . . . (z − 1)z 6 x(x + 1) . . . (x + k − 1) 6 z(z + 1) . . . (z + k − 1) < (um + k − 1)k .

Let us prove that for m > k + 2 log2 k and u > 2 we have inequalities

(um + k − 1)k < (uk + 1)m (6)

(um − k + 1)k > (uk − 1)m (7)

Proof of inequality (6). Let us apply Bernoully inequality for the quotient of right and left hand sides

(uk + 1)m

ukm
·

ukm

(um + k − 1)k
=

(

1 +
1

uk

)m (

1 −
k − 1

um + k − 1

)k

> 1 +
m

uk
−

k(k − 1)

um + k − 1
−

mk(k − 1)

uk(um + k − 1)
.

We want prove that the last expression is greater than 1. It is sufficient to establish that the sum of the three last
expressions is positive, i. e.

m

uk
>

k(k − 1)

um + k − 1
+

mk(k − 1)

uk(um + k − 1)
.

Multiply by the denominators
mum > k(k − 1)uk + (k − 1)2m .

Since m > k + 2 log2 k > k + 2 logu k, then um > k2uk. Replacement of the expression um at the left hand side by
k2uk, and factors k − 1 at the right hand side by k makes the inequality stronger:

mk2uk > k2uk + k2m .

We obtained to the correct inequality ab > a + b.
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Proof of inequality (7). Consider the quotient (um
−k+1)k

(uk−1)m = (um
−k+1)k

ukm

ukm

(uk−1)m and prove that it is greater

then 1. Indeed due to Bernoully inequality we have

(

1 −
k − 1

um

)k( uk

uk − 1

)m

>
(

1 +
m

uk − 1

)(

1 −
k(k − 1)

um

)

.

Besides 1 − k(k−1)
um > 1 − k2

um . Hence it is sufficient to prove that

1 <
(

1 +
m

uk − 1

)(

1 −
k2

um

)

= 1 +
m

uk − 1
−

k2

um
−

mk2

um(uk − 1)
= 1 +

mum − k2uk + k2 − mk2

um(uk − 1)
.

But um > k2uk, therefore,

mum − k2uk + k2 − mk2 > mk2uk − k2uk + k2 − mk2 = k2(m − 1)(uk − 1) > 0 ,

QED.

3.5. Like in previous problems it is sufficient to prove two inequalities

u7(u7 + 1)(u7 + 2)(u7 + 3)(u7 + 4) < (u5 + 1)7 , (8)

u7(u7 − 1)(u7 − 2)(u7 − 3)(u7 − 4) > (u5 − 1)7 . (9)

To prove (8) expand parenthesis

u35 + 10u28 + 35u21 + 50u14 + 24u7 <

<u35 + 7u30 + 21u25 + 35u20 + 35u15 + 21u10 + 7u5 + 1 .

We see that if u > 2 then each summand of upper row less than corresponding one of the lower row.
To prove (9) expand parenthesis

u35 − 10u28 + 35u21 − 50u14 + 24u7 > u35 − 7u30 + 21u25 − 35u20 + 35u15 − 21u10 + 7u5 − 1 .

Collect together summands of the same sign.

6u30 + u30 + 35u21 + 35u20 + 24u7 + 21u10 + 1 >

> 10u28 + 21u25 + 35u15 + 50u14 + 7u5

We see that if u > 2 then each summand of lower row less than corresponding one of the upper row.

3.6. This problem and next two ones are taken from [1].

3.7. As an example one can take a set of 17 integers starting from 2184.

3.8.

4 Общие свойства решений уравнения

4.1. If x 6 k all integers between x + k and 1
2 (x + k) are factors of the left hand side of the equation. According

to Bertrand postulate one of them is a prime number p. Obviously that the left hand side is not divisible by p2.
Therefore it could not be an m-th power.

4.2. According to Sylvester theorem there is a factor x+ i that is divisible by a prime p > k. Since other factors at
the left hand side are not divisible by p the product could be an m-th power only if x + i is divisible by pm. Then
x + i > pm > (k + 1)m. If at the same time x 6 kp, then kp + i > x + i > (k + 1)p. Hence i > pk, which is wrong.

4.3. If a number ai has a prime divisor p > k, then other integers among x, x + 1, . . . , x + k − 1 are not divisible
by p. Then x+ i is divisible by pdm. Since x+ i = aiz

m
i , then p is relatively prime with ai. We got a contradiction.

4.4. Note, if we find at least 5 integers ai which are divisible by primes 2 and 3 only, then we deduce that the
equation has no solutions similarly to the problem 1.10. Such 5 integers really exist, because we have 7 integers ai

with divisors 2, 3 and 5 only, and at most two of them are divisible by 5.
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4.5. Similarly to the previous problem we would find 5 integers divisible by 2 and 3 only. The integers ai have
prime factors 2, 3, and 5 only (each factor in the power 0 or 1). The product of all ai is a perfect square. At most 2
of initial consecutive numbers are divisible by 5, hence at most 2 of ai are divisible by 5. It is sufficient to consider
a case when we have exactly 2 integers ai which are divisible by 5. This case is possible only if a0 and a5 are
divisible by 5.

Consider 4 integers x+ 1, x+ 2, x+ 3, x+ 4. We know from the problem 1.5 that their product is not a perfect
square. Hence the total power of divisor 2 or the total power of divisor 3 in the product a1a2a3a4 is odd. It is
possible only in two cases:

1) There is only one integer among a1, a2, a3, a4 divisible by 2;
2) There is only one integer among a1, a2, a3, a4 divisible by 3;
Besides that we have at most 2 integers ai divisible by 2; the same is true for 3. Then it is easy to see that in

each case we have among integers x + 1, x + 2, x + 3, x + 4 two integers either of the form t2 or of the form 2t2,
or of the form 3t2. But this is impossible.

4.6. This statement is a part of lemma 1 of [3]. Cancel equal factors. Since GCD(n + i, n + j) < k and n > km, we
see that any factor at the left hand side does not divide the product at the right hand side.

4.7. Let ai = aj , where 0 6 j < i < k + 1. Since n + i = aiz
m
i > n + j = ajz

m
j , then zi > zj + 1. Therefore

k > ajz
m
i − ajz

m
j = aj

(

(zj +1)m − zm
j

)

> ajmzm−1
j > a

(m−1)/m
j zm−1

j = (ajz
m
j )(m−1)/m = (x+ j)(m−1)/m > x1/m ,

that contradicts to the statement of the problem 4.2.

4.8. It follows from the next solution. One can put u = v = 1.

4.9. This statement is lemma 1 from [3]. Assume that

ai1ai2 = aj1aj2t
3 .

Let us check that t = 1 and sets of indices coincide. WLOG (x + i1)(x + i2) > (x + j1)(x + j2) (the equality is
impossible due to problem 4.6).

Let t = u/v (GCD(u, v) = 1). Then ai1ai2/u3 = aj1aj2/v3 and both sides are integers. Let A = ai1ai2/u3 =
aj1aj2/v3.

By the definition of ai we have x + i = aiz
3
i , then

(x + i1)(x + i2) = ai1ai2 ·
s3

u3
,

(x + j1)(x + j2) = aj1aj2 ·
r3

v3
,

where s = uzi1zi2 , r = vzj1zj2 . Then As3 > Ar3, so s > r + 1. Thus

(x + i1)(x + i2) − (x + j1)(x + j2) > A
(

(r + 1)3 − r3
)

> 3Ar2 .

Note that Ar3 = (x + j1)(x + j2) > x2, then the last inequality could be rewritten as

(x + i1)(x + i2) − (x + j1)(x + j2) > 3A ·

(

x2

A

)2/3

> 3x4/3 .

On the other hand
(x + i1)(x + i2) − (x + j1)(x + j2) < (x + k)2 − x2 < 3kx .

Obtained estimations contradict to each other, because due to problem 4.2 we know that x > k3, and therefore
3kx < 3x4/3.

4.10. We need to find 20 integers ai, which are divisible by primes 2, 3, 5, 7 only.
We know that integers ai are divisible by the primes are not greater than 75 only, i.e. 2, 3, 5, 7, 11, 13, 17, 19,

23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73. The integers ai are divisors of 75 consecutive integers therefore:
1) for every prime p ∈ [41; 73] (there are 9 prime numbers in this interval) at most 2 of ai are divisible by p;
2) for every prime p ∈ [29; 37] (there are 3 prime numbers in this interval) at most 3 of ai are divisible by p;
3) at most 4 of ai are divisible by 23; at most 4 of ai are divisible by 19;
4) at most 5 of ai are divisible by 17;
5) at most 6 of ai are divisible by 13;
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6) at most 7 of ai are divisible by 11;
So we have at most

18 + 9 + 8 + 5 + 6 + 7 = 53

integers. Hence at least 75 − 23 = 22 integers have prime divisors 2, 3, 5, 7 only.

4.11. Consider integers ai which have prime divisors 2, 3, 5, 7 only. By the previous problem we know that at least
20 integers have that property, but for our purposes it is sufficient to take 10 of them. If we have 10 numbers ai,
we can construct 90 = 10 · 9 different formal quotients of the form ai/aj.

On the other hand, due to the statement of problem 4.9 the quotient of two products of the form aiaj (including
quotients of the form ai/aj) does not equal to qube of rational number. Therefore there exist at most 34 = 81
classes for the values of quotients ai/aj for our 10 numbers (each prime 2, 3, 5, 7 divides this quotient in power
0 + 3s, 1 + 3s, 2 + 3s). Hence two quotients belong to the same class and we have a relation

ai

aj
=

au

av
· t3 ,

which is restricted by the statement of problem 4.9.

4.12. This beautiful solution we take from [3].
For each prime p0 < k − 1 choose ai for which x + i is divisible by p0 to the highest power. Then for j 6= i the

the power of p0 dividing x+ j is the same as the power of p0 dividing (x+ i)− (x+ j) = j− i. Thus, if ai1 , ai2 , . . . ,
aid

is a list of nambers that was NOT chosen (then d > k − π(k)) and pa
0 is a maximal power of p0 that divides

the product ai1ai2 . . . aid
, then pa divides also the product (k − i)!(i − 1)!, and hence pa divides (k − 1)! (because

(k−1)!
(k−i)!(i−1)! is integer). So the the product of integers that was not chosen divides (k − 1)!.

4.13. This proof of Erdős we cite by [2].
Since the integers ai are square free and pairwise different, Bx(k) > B′(k), where B′(k) is a product of first k

square free numbers. It is sufficient to prove that B′(k) > (4/3)kk! when k > 24.
Induction by k. Base, k = 24.

26 · 29 · 30 · 31 · 33 · 34 · 35 · 37

4 · 8 · 9 · 12 · 16 · 18 · 20 · 24
>

(

4

3

)24

.

Step of induction. For r > 9 the number of square free integers that does not exceed r is at most r−
[

r
4

]

−1 < 3
4r.

Therefore for n-th square free integer for n > 7 is at most 4
3n.
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