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1 Introduction

Basic notions

As in the usual weighing problems, we have a set of coins indistinguishable by sight, though one of
them is false. The weight of a false coin is a bit smaller than the weight of a genuine one, ans we
want to find this false coin. In different problems we will use the different types of testers.

A detector is a tester, which at one turn (or testing) tells whether a given subset of coins contains
a false one or not. Thus, for any subdivision of the total set into two subsets, a detector shows
which one of them contains a false coin.

A bi-scaled balance (or simply balance) is a tester comparing the weights of two subsets. Thus,
for two subsets with equal numbers of coins, the balance compares the numbers of false coins in
these subsets. In our problem, the balance shows which of three subsets in a subdivision contains
a false coin (two of three subsets should have the same cardinality).

The zest of this problem set is that some testers can report a wrong information. Actually,
such a tester does not behave as a “liar”: it does not necessarily tell the wrong messages each time.
It is simply broken, so its responses may appear wrong and correct from time to time; they have no
relation to the reality, and we can consider this balance as a generator of random answers. So, we
have several testers, and we know only the number of broken testers among them; but we do not
know, which ones are broken. (Note that at each testing, only one tester is used!)

Let us introduce the notation. We denote by Dx,y(z) the minimal number of testings by detectors
which are necessary to find one false coin from n using x detectors with y broken ones among them.
(We should be able to specify the false coin for each possible sequence of detector responses.)
Analogously, by Bx,y(z) we denote the same number for the testing system consisting of x balances
with y broken ones among them. The systems of x detectors (balances) with y broken ones will be
referred to as xd[y] (xb[y]).

Throughout the first sections, we will write down two formulations of the problem: one in an
usual language, and another in our notation. This is to get all the readers acquainted with the
notation.

2 Introductory problems: some particular cases

What are we able to achieve?

2.1. Using three balances with one broken among them, we can find a false coin of 3 ones in
3 weighings. (Using the notation: B3,1(3) ≤ 3.)

2.2. a) Using three detectors with one broken among them, we can find a false coin of
8 ones in 6 detections. (Using the notation: D3,1(8) ≤ 6.)

b) Using three balances with one broken among them, we can find a false coin of 9 ones in
4 weighings. (Using the notation: B3,1(9) ≤ 4.)

2.3. a) Using three detectors with one broken among them, we can find a false coin of
32 ones in 9 detections. (Using the notation: D3,1(32) ≤ 9.)

b) Using three balances with one broken among them, we can find a false coin of 81 ones
in 7 weighings. (Using the notation: B3,1(81) ≤ 7.)
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What are we unable?

2.4. If we have two coins with one of them being false, it is not possible to find the false
one in 2 testings using any number of testers with at least one broken among them. (Using the
notation: Dx,1(2) ≥ 3, Bx,1(2) ≥ 3.)

2.5. a) It is not possible to find a false coin from 2k ones in k detections by any number
of detectors with one broken among them. (Using the notation: Dx,1(2

k) > k).
b) It is not possible to find a false coin from 3k ones in k weighings by any number of

balances with one broken among them. (Using the notation: Bx,1(3
k) > k).

2.6. a) It is not possible to find a false coin from 2k ones in k + 1 detections by any
number of detectors with one broken among them. (Using the notation: Dx,1(2

k) > k + 1).
b) It is not possible to find a false coin from 3k ones in k + 1 weighings by any number of

balances with one broken among them. (Using the notation: Bx,1(3
k) > k + 1).

c) It is not possible to find a false coin from n > 36 ones in 11 weighings by any number of
balances with two broken ones among them. (Using the notation: Bx,2(n) > 11, if n > 36).

3 Rough but serial results

Upper bounds

In this section, k is always a positive integer.
3.1. a) For each k find the minimal value of K such that DK,k(n) < ∞ for every n (in

other words, find the least number of detectors with k broken among them such that it is possible
to find the false coin using them).

b) For each k find the minimal value of K such that BK,k(n) < ∞ for every n.

3.2. a) Prove that D3,1(2
k) ≤ 2k + 1.

b) Prove that B3,1(3
k) ≤ 2k + 1.

It follows from the previous problem that, using some balances with one broken, one can find a
false coin from n in approximately 2 log2 n detections, or in approximately 2 log3 n weighings. But
this estimate is not sharp. The aim of this section is to find the correct constant in the estimates
of the form Dx,1(n) . c log2 n and Bx,1(n) . c log3 n.

3.3. a) Prove that B3,1(3
2k) ≤ 3k + 1.

b) Prove that D3,1(2
2k) ≤ 3k + 2.

The previous problem shows that c can be made less than 2. Our next aim is to prove that
c = 1. It is easier to make this using more than 3 testers.

We write f(k) = o(k) for the function growing slower than k, that is, f(k)/k → 0 (k → ∞). For instance,

log
2
k = o(k) and

√
k = o(k).

3.4. a) Prove that having an infinite number of detectors with one broken, one can find
a false coin from 2k in k + o(k) weighings; that is, D

∞,1(2
k) = k + o(k).

b) Prove that having an infinite number of balances with one broken, one can find a false
coin from 3k in k + o(k) weighings; that is, B

∞,1(2
k) = k + o(k).

3.5. a) Prove that there exists x such that Dx,1(2
k) = k + o(k).

b) Prove that there exists x such that Bx,1(3
k) = k + o(k).

3.6. a) Prove that D3,1(2
k(k+1)) ≤ (k + 1)2 for every k ≥ 5.

b) Prove that B3,1(3
k(k+1)) ≤ (k + 1)2 for every k ≥ 2.

Lower bounds

3.7. a) Prove that Dx,1(n) ≤ Dx,1(2
k) if n < 2k.

b) Prove that Bx,1(n) ≤ Bx,1(3
k) if n < 3k.

3.8. a) Prove that Dx,1(n) ≤ Dx,1(N) if n < N .
b) Prove that Bx,1(n) ≤ Bx,1(N) if n < N .
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3.9. a) Suppose that Dx,1(n) = d; prove that
2d

d + 1
≥ n. (This bound does not depend

on x!)

b) Suppose that Bx,1(n) = d; prove that
3d

2d + 1
≥ n.

4 Sharp results

The aim of this section is to bring upper and lower bounds together. So it begins with some
particular cases again.

4.1. a) Prove that D4,1(2
4) = 7.

b) Prove that B4,1(3
6) = 9.

4.2. a) Find the maximal number of coins n such that D4,1(n) ≤ 15.
b) Find the maximal number of coins n such that B4,1(n) ≤ 13.
c) Find the maximal number of coins n such that B4,1(n) ≤ 40.

4.3. Find some value of n such that B4,1(n) < B3,1(n).

4.4. a) Prove that D4,1(3
k) = k + log2 k + cdk, where the sequence cdk is bounded.

b) Prove that B4,1(3
k) = k + log3 k + cbk, where the sequence cbk is bounded.

c) Try to find a better upper bound for these sequences.

4.5. a) Prove that Dx,1(n) = D4,1(n) for every n and x > 4.
b) Prove that Bx,1(n) = B4,1(n) for every n and x > 4.

Fix some value of s. If there exists t such that Dt,s(n) = Dx,s(n) (Bt,s(n) = Bx,s(n)) for all x > t,
then we say that t is an ideal number of testers (for he given number s of broken ones). In other
words, it is senseless to increase the number of testers. The previous problem states that 4 testers
is an ideal number for 1 broken tester.

4.6. a) Find whether the estimate of the same form as in problem 4.4 is valid for D3,1(n).
b) The same question for B3,1(n).

3


