Stability of intersections of paths in the plane
P. Dergach, 1. Netay, A. Skopenkov, M. Skopenkov

He wants it rare, but something’s there
that holds him back from the attack
Accept and Deaffy, Dogs on Leads.

The main results are criteria for stability of intersections of paths and cycles in the plane
(problems D-2.d, D-3.d; the proof is outlined in the problems D-2.abc and D-3.abc; all the
definitions are given below). The criteria are formulated in terms of derivation of graphs and
cycles.!

In the following problems, let us agree that for any assertion formulated as a problem, a
proof of this assertion is required.

The parts A, B, C are set before a half-way finish, the rest are set after it.

0. The city N in the plane is formed by several squares (of side 1) joined by disjoint roads
(straight line segments). Suppose that there is a path passing through each road exactly once
(this path can go through certain squares several times). Prove that there is a path without
self-intersections passing through each road exactly once.

A. Stability of intersections of a pair of paths.?

Problem on the stability of intersections of a pair of paths. Two hunters hunt in
a forest. Each leads a dog on a short lead. The dogs obey the hunters and move as they are
commanded. If one dog intersects the path of another, it barks and scares off a game. Having
fixed paths of the hunters, how to determine whether these hunters could maintain successful
hunting (in this case the intersection of paths of the hunters is called unstable®)?

We shall assume that all the paths of hunters and dogs are formed by finite unions of
rectilinear arcs (i.e. are piecewise-linear). For such paths of hunters there is a slow full search
algorithm for recognition of the stability of intersections. Finding a fast algorithm is an unsolved
problem.

In the following problems we assume that the hunters move along a certain system of roads
in a plane. We assume that both the hunter and the dog are points (not necessarily distinct).
The lengths of leads are 1 m.

A-1. Two hunters move along the road that has the form of a segment of 1 km length. The
hunters may change the direction of movement. Prove that independently of hunters’” movement
one dog could move without intersections with the path of another dog.

Example. Two hunters moved (with constant speed and permanent direction) along recti-
linear roads of length 2 km; the roads intersect at their middle points and form right angles at
the intersection point (fig. 1.a, where ¢(I;) and ¢(l3) are paths of hunters, and f; and f, are
possible paths of dogs). Then one dog did intersect the path of the other.

A-2. A system of roads has the form of letter "H” (see fig. 1.b); the lengths of AB, BC,
BE, DE, EF are 1 km. The first hunter moved along the path ABEF and the second along
CBED. Then one dog did intersect the path of the other.

IProblem of the stability of intersections of paths interesting not only with the point of view of graph theory
but also with the point of view of topology. It is a particular case of problem on realization of mapping graphs
in the plane. This sequence of problems is based on the articles [Mi97, Sk03] and overlaps with [RS00, §2, S,
chapter 7] only in problems 0, B1 and D4.

2Tt is possible to solve many problems of this sequence by experiment. To carry out the experiments that
involve dogs ask adults for permission.

3The formal definition is given in page 5.
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Figure 1: The transversal intersection and a path in letter ” H”

For proving that certain paths of dogs must intersect the following theorem could be useful.
You are allowed to use it without proof.

A cycle is a path whose starting point and endpoint are the same; it is not specified which
point is the starting point (see Figure).

Note that self-intersection points (i.e. points corresponding to the dog’s intersection of its
own path) are not counted as intersection points.

Two piecewise-linear paths (or cycles) intersect transversally, if near each intersection point
these paths look like two paths (/) and ¢(I2) in Fig. 1.

Even Number Theorem. Two (piecewise linear) cycles in the plane that intersect transver

sally have an even number of intersection points.

A-3. A system of roads has the form of letter ”Y”. This letter is formed by three straight-
line segments making angles 27/3 at the common point (fig. 4.Y). Give an example of two
hunters’ paths such that the hunters could not maintain successful hunting.

B. Stability of self-intersections of path and of cycle.

Problem of the stability of self-intersections of path. One hunter walks in a forest
and leads a dog on a short lead. The dog obeys the hunter and moves as it is commanded. If
the dog intersects its path, it barks and scares off a game. How to determine, for the fixed path
of the hunter, whether he could maintain successful hunting? (If he can, the self-intersection
of the path of hunter is called unstable.)*

The main result of the presented problems is a fast algorithm recognizing the stability of

self-intersections °.

B-1. (a) A hunter moves along the road that has the form of a segment of length 1km.
The hunter may change the direction of movement. Prove that independently of the hunter’s
movement the dog can move without intersecting its trace.

(b) The same for the road that has the form of the circle of radius 1km.

4The formal definition is given in page 5.

5Problem on the stability of self-intersections of paths is similar to the classical problem on planarity of
graphs (i.e. realization of graphs in the plane without self-intersections) and even is reduced to recognition of
the planarity of graphs (however the number of graphs required for one path is large). Problem of the realization
of graphs is solved, for example, by the Kuratowski criterion. For the problem on approximation by embeddings
such a criterion does not exist [Sk03], see problem D8.



B-2. (a) Each path without self-intersections has unstable self-intersections (this should
not confuse the reader).

(b) If self-intersections of a path are unstable, then the same is true for all subpaths of this
path 6.

(c) If intersections of a certain pair of subpaths of a path are stable, then self-intersections
of this path are stable.

(d) There exists a path that does not contain transversal intersections but does have stable
self-intersections.

One of the main results of this sequence of problems is the following theorem (try to prove
it, but not too hard!)

Theorem on subpaths. A path in the plane has stable self-intersections if and only if
there are two subpaths of this path that have stable intersections.

B-3. Assume that a system of roads form certain graph in the plane, so that the edges
are straight line segments of length at least 1 km and the distance from every vertex to every
edge that does not contain this vertex is more than 10 m. Suppose that the hunter walked
along this system of roads, passing along every road only once and changing the direction of
his movement only at vertices. Prove that the path of the hunter has stable self-intersections
if and only if the path contains transversal self-intersections.

B-4. There exists an algorithm recognizing stability of self-intersections for given path in
the plane.

B-5. (a) The hunter moved along a circular path of diameter 1 km (with constant speed
and permanent direction along the circle) and winded twice along the circle. He lead a dog on
a lead of length 1 m. The dog returned to the starting point at the end of the movement. Prove
that the dog necessarily intersect its own path (in a certain moment of time different from the
final movent, fig. 2).

(b) Is the analogue (a) correct if we do not suppose that the dog returned to the starting
point at the final moment?

(c) Prove the analogue of (a) for the case when the hunter winded three times along the
circle.

(d) For which number of windings in the analogue of (a) the dog necessarily intersected its
own path?

(e) Suppose that the road is the segment of length 1 km. Prove that independently of the
hunter’s movement the dog can move without self-intersections and so that at the final moment
of movement it will return to the starting point.

Figure 2: A path of the dog

C. Derivative of graphs and paths.

6The formal definition of a subpath is given in page 5



The derivative G’ of a graph G is a graph whose vertices are in one-to-one correspondence
with the edges of the graph G. Vertices ¢’ and f’ that correspond to edges e and f are connected
by an edge in the graph G, if the edges e and f have a common vertex (fig. 3).

G D(G)
Figure 3: The derivative of a path in a graph

C-1. Draw the derivatives graphs of (fig. 4):
(a) an arc with n edges; (b) a circle with n edges;
(c) a star with n rays; (d) letter " H”.
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Figure 4: Differentiate us!

C-2. A graph is called planarif it can be drawn in the plane without self-intersections. The
derivative of a planar graph is not necessarily planar.

A pathin a graph G is a sequence of vertices vy, v1, . . . , v, such that v; and v;; are connected
by an edge in the graph G.

A path (a cycle) vy, ...,v, is called an Euler path (cycle) if it passes through each
edge of the graph G only once, i.e. if each edge of the graph G is present among the edges
VoUp, V102, . . ., Up_1U, Only once.

Suppose that a path ¢ in a graph G is defined by a sequence vy, vy,...,v, of vertices.
Consider the sequence (vov1)', ..., (vn,—1v,)" of vertices of the derivative graph. In this sequence
there could be the same consecutive vertices. Substitute each set of the same consecutive
vertices by one vertex. In this way we obtain a path ¢’ that is called the derivative of the path
. The derivative of a pair of paths is a pair of paths defined analogously.

Example. Let A be the ’letter A’ graph, i.e. the graph with vertices a1, as, as, a4, as and
edges ajas, asas, asay, asay, asas (fig. 3). Denote by by = (ayaz2)’, by = (azas)’, by = (agay)’,
by = (asay)’, bs = (asas)’ the vertices of the derivative of A. Let ¢ be a path ajasasasazasasagas
in the graph A. Then the derivative ¢’ is the path b;b3bybsb3bs.

C-3. (a) Find the first and the second derivatives of the paths and the pairs of paths from
fig. 3 and fig. 1 (and also of your paths constructed in problems A3 and B2d).
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(b) Given a path with n vertices, the number of vertices in the derivative path does not
exceed n — 1.

(c) We say that a path ¢ has a return point, if v;v;11 = v;4110;49 for some integer i. A path
(cycle) ¢ is an Euler path if and only if it does not have return points and ¢’ does not have
self-intersections.

Formal definitions.

Let us give an equivalent formulation of problem B-5 (the equivalence is proved in [Mi97]).
Consider two clearings (i.e. two disks) in the plane connected by two paths (i.e. strips) a and
b, as it is shown on Fig. 2. The dog moved on the clearings and paths, and at last returned into
the starting point. Each time when the dog moved from the clearing to the path, it wrote down
the letter corresponding to this path. It is stated in the problem B-5 that if we get the word
abab then the dog necessarily intersected its own path (at a certain moment of time different
from the final moment).

The other problems can be reformulated in a similar way.

Figure 5: Two clearings

We shall give the formal definition of stability of intersections and self-intersections. Denote
a segment by I = [0, 1], a circle (i.e. a segment with the ends glued) by S! and the plane by
R2. A piecewise-linear path in the plane is a mapping ¢ : I — R? for which there exist points
0=wvy <v; <...<wv,=1such that ¢ is linear on each of the segments [v;, v;41]. A cycle is
defined analogously substituting I by S!. We shall consider only piecewise-linear paths and we
shall call them simply paths. A subpath of a path ¢ : I — R? is a path ¢ : J — R? such that
v =|;, where J C I.

A path ¢ : I — R? has unstable self-intersections (or allows the removal of self-intersections
by a small perturbation, or is approximable by embeddings), if there exists a path without self-
intersections, arbitrarily close to our path (i.e. if for each &€ > 0 there exists a path ¢ : I — R?
without self-intersections such that the distance between the points f(z) and () is less than
e for each point x € I). The stability of self-intersections of the cycle ¢ : S' — R? is defined
analogously.

A pair of paths ¢,y : I — R? has unstable intersections (or allows the removal of self-
intersections by a small perturbation), if there exist a non-intersecting pair of paths arbitrarily
close to our paths (i.e. if for each € > 0 there exist non-intersecting paths fi, fo : I — R? such
that distance between the points f;(x) and ¢;(x) is less than e for each point # € I and for
each 1 =1, 2.

For instance, the transversal intersection (Fig. 1) of two paths is stable.

For example, the problem B-lab can be reformulated in this language as follows:

If the image ¢(I) of a path ¢ : I — R? is a segment or a circle then the self-intersections
are unstable.



Hints and solutions of some problems from parts A, B, C.

A-1. Draw a straight line along our road. It splits the plane into two half-planes. The first
hunter orders his dog to move in one of the given half-planes, and the second hunter orders his
dog to move in another half-plane. Then the dogs’ paths do not intersect.

A-2. Assume that the dogs may move so as not to intersect each other’s paths. Let A'F’
and C'FE’ be the paths of the dogs. We close these paths by adding to them broken lines F’ X A’
and E'X(C" shown in the figure 6. The maximal distance between the hunter and the dog is
much less than the distances between each two of the points A, C, E, F', hence the broken line
F'"X A’ does not intersect the path C'E’, and the broken line E' X C’ does not intersect the path
A'F'. Thus the two cycles A’F'X A" and C'E' X" transversally intersect in the unique point
X. And according to the Even number Theorem the number of their intersection points has to
be even. The obtained contradiction proves that the dogs’ paths do intersect.

Examples to the problems A3 and B2d are presented in Fig. 6, where (for clarity) is shown
not the initial path itself, but a general position path close to the initial path is drawn. However,
see [Mi97, Sk03].

Hint: it is possible to reduce this problem to non-planarity of the Kuratowski graphs Kj
and K3 3. The dotted line on the Fig. 6 will help to do this.
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Figure 6: Paths with stable self-intersections

B-1. (a) Direct the axis 0z along the road, and take an axis Oy perpendicular to the road.
Assume that the hunter’s coordinate (expressed in meters) is given by the function z(¢), and
the hunting time changes in the range from 0 to 7. The hunter orders the dog to move along
the graph of the function z(¢), compressed towards the axis Oz, i.e. let the dog’s coordinates
at the moment t be (z(t),t/T). It is easy to see that in this case the dog will not intersect its
own path, and in every moment of time it will be closer than 1 m from the hunter.

(b) We will act analogously to the item (a): the dog moves so that in each moment of time
it is on the ray that is directed from the center of the circle to the point where the hunter is
situated, and its distance from the hunter is ¢/7" m (where T is the total hunting time). Then
the dog will not intersect its own traces, and in every moment of time it will be closer than 1
m from the hunter.



B-2. (a) Suppose that the dog follows in the tracks of the hunter, i.e. in each moment of
time the dog and the hunter are in the same point (it is not prohibited by the conditions). The
hunter’s path will not self-intersect, and thus the dog’s path also will not self-intersect.

(b) The self-intersections of the path are unstable, and so the dog can move without in-
tersecting its own path. We shall consider the dog’s movement only in the segment of time
that corresponds to the chosen subpath. It also does not self-intersect. That’s why the chosen
subpath has unstable self-intersections too.

(c) Suppose that self-intersections of the path are unstable. Then the dog may move without
intersecting its path. Concern the dog’s movement only in two segments of time that correspond
to the chosen subpaths. These two paths do not intersect. Thus self-intersections of the
corresponding pair of subpaths are unstable.

B-3. It is clear that if the hunter’s path contains transversal self-intersection then the
hunter’s self-intersections are stable. Prove that if the path does not contain transversal self-
intersections in the considered case then the hunter’s self-intersections are unstable. We shall
draw a circle with the radius 1 m around every point of connection of roads. Let the dog
follows the tracks of the hunter all the time when the hunter is outside of these circles. At
the moment when the hunter begins to move inside a certain circle, the dog takes a short cut,
moving along the chord instead of a pair of radii, as it is shown on the figure. The built path
does not self-intersect. Indeed, the hunter passes along each road only once, so the dog does
not intersect its own path outside the circles. If the dog intersects its path inside a circle then
some two of chords drawn by us intersect. And it is possible only if the hunter’s path has a
transversal self-intersection in this point.

Figure 7: The dog takes a short cut

B-4. See the formulation of the problem D7 (simple but slow algorithm) and Minc theorem
D2d (more complex but fast algorithm).

B-5. (a) Assume that the dog may move without intersecting its own traces. Let A be a
certain point of the circle. Consider the ray OA that is directed from the center of the circle
to the point A. It is obvious that the dog’s cycle has intersected the ray OA at least twice: at
least once when the hunter made the first cycle and at least once when he made the second
cycle. We mark on this ray all its intersection points with the dog’s path. It is obvious that
there exist two ”adjacent” marked points A" and A” (i.e. such points that there are no marked
points on the segment between these two ones), one of them is related to the moment when
the hunter made his first turn along the circle, and the other - to the moment when the hunter
made the second turn. Let us "tear” the dog’s cycle in the points A" and A” and add a pair of
paths p’ and p” situated "near” the segment A’ A” which intersect transversally in the point X,
as it is shown on the figure. As a result, we will obtain from the dog’s cycle a pair of cycles that
intersect transversally in the unique point X. But, according to the Even number Theorem,
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the quantity of the intersection points of two cycles must be even. The obtained contradiction
proves that the dog must intersect its own path.

Figure 8: Transformation of the cycle

(b) Answer: in this case the dog may move without intersecting its own path.

(¢) The proof repeats word-for-word our reasoning from the item (a).

(d) Answer: for every number of turns (in any direction) not less than two. The proof
repeats word-for-word our reasoning from the item (a).

(e) We may consider (without lack of generality) that the hunter was in all of the points of
the road, including its ends (otherwise we shall just diminish the segment of the road to obtain
this condition). In this case it is possible to suppose that the hunter’s cycle begins and finishes
at one of the ends of the segment. Let the dog move along the graph of the hunter’s movement,
compressed towards the road (analogously to the solution of the problem Bla). Then we have
only to close the dog’s path, adding a broken line situated near the end of the segment, as it is
shown on the figure. The constructed cycle does not self-intersect.

- ) - )

Figure 9: We close the dog’s path

C-1. (a) Arch with n — 1 edges; (b) circle with n edges; (c¢) full graph with n vertices;
(d) graph made from the two triangles with a unique common vertex.
C-2. Example: a star with 5 rays - a planar graph which derivative is a non-planar graph

(a full graph with 5 vertices).
C-3. (a) E. g., see fig. 10.

(b) Let the initial path consist of n vertices v, vs,...,v,. Then there are exactly n —
1 vertices in the sequence (v1v9), (vovs)’, ..., (v,—1v,). To construct an arbitrary path we
(maybe) exclude some vertices from the given path. As a result we get the path containing not
more than n — 1 vertices.

(c) Let ¥ be the Euler path vy, vy, ..., v,_1,v, = vy. Since the Euler path comes along every
edge only once, there are not two same edges in the sequence (vv7), (vov3), . .., (Vp—1v,). Thus
in the sequence of the vertices of the derivative of the given path (vivs)’, (vovs)’, ..., (Va_1vy)’
there are not two same vertices. So the path ¢’ does not self-intersect.
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Figure 10: The second derivative of a path

D. Main problems
D-1. Self-intersections of the paths in Figure 6 are stable.

For a piecewise linear path ¢ : I — R? the image ¢(I) can be considered as a graph
with vertices ¢(v1),...,9(v,). From every piecewise linear path ¢ a path in the graph ¢([)
can be constructed in a unique way. Vice versa, suppose that the graph G be drawn in the
plane without self-intersections so that all its edges are straight line segments. For every path
V1, ..., v, in the graph G we shall build a path ¢ : [0, 1] — G in the plane, setting ¢(%) = v; for
every i = 0,...,n and extending ¢ linearly on the segments £, %], The path ¢ : [0,1] — R?
that is constructed in this way from a certain path in the graph G, is called simplicial.

D-2. (a) If a path ¢ does not contain transversal self-intersections then the graph /(1) is
planar.

Fix the "natural” embedding of the graph ¢'(I) into the plane (invent the definition your-
self). Then ¢': I — ¢/(I) is a certain path in the plane.

(b) If self-intersections of a path ¢ are unstable then self-intersections of the path ¢’ are
also unstable.

As a corollary, obtain the proof of the statement from problem A2.

(c) If a path ¢ does not contain transversal self-intersections and self-intersections of the
path ¢ are unstable then self-intersections of the path ¢ are also unstable.

(d) The Minc Theorem. Self-intersections of a simplicial path ¢ : I — G containing n points
are stable if and only if for a certain k = 0, ..., n its k-th derivative ¢*) contains a transversal
self-intersections.

(e) Prove the Theorem on two subpaths.

D-3. (a) For which m self-intersections of the cycle winding of degree m (Figure 2 for
m = 2) are stable?

(b) For every cycle ¢ there is k such that ¢©*) is a winding.

(c) The statements of the problems D2abc remain true for a cycle .

(d) Theorem. The self-intersections of a simplicial cycle ¢ : S' — G that contains n
points are stable if and only if for certain k = 0,...,n its k-th derivative ¢*) either contains a
transversal self-intersection or is a standard winding of degree m # 0, +1.

D-4.* Consider a cycle ¢. How to determine m such that ¢(*) is a winding of degree m?

D-5.*% Consider a set of paths in a given graph in the plane. Formulate and prove a criterion
of approximating this set by a set of

(a) non-intersecting and non-self-intersecting paths;

(b)* non-intersecting (but possibly self-intersecting) paths.



D-6. How to construct an ”integral” of a given path? Use this to invent new examples of
paths with stable self-intersections.

D-7. (a) For a simplicial path ¢ : I — G C R? substitute every edge of the graph G by
k close edges if the path ¢ passes along this edge k£ times. Denote the constructed graph by
G C R2. Denote by m : G — G the projection mapping to an edge ab the union of multiple
edges corresponding to the edge ab of G. Self-intersections of the path ¢ are stable if and only
if there exists a path ¢ : I — G without transversal self-intersections such that 7 o ¢ = ®.

(b)* Invent a fast algorithm for recognition whether a given path in the graph in the plane
has transversal self-intersections.

D-8. There exists an infinite set of paths ¢ : I — R? with stable self-intersections such
that their images:

(a) are trees (containing each other);

(b) are "letter Y” (see the Figure 4.Y);

(c) are (A. Chalyavin) "letter P” (see the Figure 4.P), the paths do not have return points
and no one of them is a subpath of any other.

D-9.* The minor of a graph is a graph that is obtained from the initial graph by several
operations of throwing away (the interior of) an edge or gluing ends of an edge. The Kuratovski
Theorem has the following equivalent formulation: a graph is planar if and only if it does not
have minors isomorphic to K5 and Kj 3.

Invent a notion of a minor of a path and find out whether there exists an infinite set of
(piecewise linear) paths ¢ : [0, 1] — R? with stable self-intersections so that no path of these is
a minor of any other graph from this set. Solve the same problem for the set of paths whose
images are triods or whose images are trees embedded into each other.
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Hints and solutions of some main problems.
D-1. Follows by D2b.

D-2. (a) Draw the graph ¢/(I) in the plane as follows. Put the vertices of the graph ¢'(I)
in the middle points of corresponding edges of the initial graph G. Edges of the graph ¢'(I)
are drawn as follows.

For each vertex v of the graph G make the following construction. Draw a small circle in the
plane centered at this point v. Every edge of the graph G issuing out of the vertex v intersects
this circle at a certain point. Go clockwise along the circle. Enumerate the edges of the graph
G issuing out of v in their order along the circle: vy, vs, ..., v,. Near the intersection point of
the edge v; and the circle take n — 1 points v; 1,vi2, ..., Vii—1, Viit1, - - -, Vipn i the circle in this
order counterclockwise.

For each edge vjv’; of the graph ¢'(I) make the following construction. Draw the edge as a
broken line of three segments, so that the edge connects the middle point of the edge v; with
the middle point of the edge v; and passes through the points v; ; and v;;.

We shall show that the drawn graph ¢'(I) does not have self-intersections. In the opposite
case the self-intersection point is inside one of the constructed circles. Thus for certain edges
vv; and vy in the graph ¢'(I) the segments v; jv;; and vy v, intersect. But this is possible
only if the initial path has a transversal self-intersection.

The same solution can be obtained by construction of the system of discs and strips for the
graph ¢'(I) (cf. page 5). Figure 11 may help to realize this idea.

N

2 i

Figure 11: Discs and strips for the derivative graph

(b) A detailed solution can be found in the article [Sko03, Lemma 2.2A].

(c) The given statement is proved using an analogous method. A detailed proof is given in
the article [Sko03, Lemma 2.1].

(d) The Minc theorem is deduced from the previous two items in the following way: first, if
self-intersections of the path are unstable then by (b) all the derivatives of the path also have
unstable self-intersections. Second, certain derivative of the path is a path which consists of a
unique edge, because the quantity of edges strictly decreases when we differentiate the path.
So if each derivative does not have transversal self-intersections then by (c) self-intersections of
the initial path are also unstable.

(e) Hint. Suppose that self-intersections of the path are stable. Then there exists certain
derivative having a transversal self-intersection. The transversal self-intersection is formed of
2 paths containing 2 edges each. Take two subpaths of the initial path whose derivatives are
these paths. Then their self-intersection is stable.

D-3. (a) Answer: Each m except {—1,0,1}. A detailed solution is given in the article
[Sko03, Lemma 2.3].
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(c, d) Analogously to the items (c) and (d) of the previous problem. A detailed proof is
given in the article [Sko03, Lemma 2.2.A and Lemma 2.1]

It is interesting to generalize these results to the case of maps ¢ : K — G C R?, where the
graph K is arbitrary. This case is treated in [Sko03].

D-5. (a) A theorem analogous to the Minc theorem D2d is true. The proof is analogous.

(b) The analogue of the Minc theorem is not true in this situation. A counterexample is
shown in Fig. 12. Finding a fast algorithm for checking the stability of the intersection of two
paths is an open problem.

Figure 12: A pair of paths with stable intersection
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