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Abstract. We obtain a criterion for approximability of piecewise linear maps S1 → R
2 by embeddings, analogous to

the one proved by Minc for piecewise linear maps I → R
2.

Theorem. Let ϕ : S1 → R
2 be a piecewise linear map, which is simplicial for some triangulation of S1 with k

vertices. The map ϕ is approximable by embeddings if and only if for each i = 0, . . . , k the i-th derivative ϕ(i) (defined
by Minc) neither contains transversal self-intersections nor is the standard winding of degree 6∈ {−1, 0, 1}.

We deduce from the Minc result the completeness of the van Kampen obstruction to approximability by embeddings
of piecewise linear maps I → R

2. We also generalize these criteria to simplicial maps T → S1 ⊂ R
2, where T is a graph

without vertices of degree > 3.

1. Introduction

A PL map ϕ : K → R
2 of a graph K is approximable by embeddings in the plane, if for each ε > 0 there is an ε-close

to ϕ map f : K → R
2 without self-intersections. In the major part of this paper we consider the case when ϕ is either

a path or a cycle, i. e. either K ∼= I or K ∼= S1.

Example 1.1. [12] The standard d-winding S1 → S1 ⊂ R
2 is approximable by embeddings in the plane if and only

if d ∈ {−1, 0, 1}.

It can be also proved that a simplicial map S1 → S1 is approximable by embeddings if and only if its degree
d ∈ {−1, 0, 1} (see Theorem 1.3). A transversal self-intersection of a PL map ϕ : K → R

2 is a pair of disjoint arcs
i, j ⊂ K such that ϕi and ϕj intersect transversally in the plane.

Example 1.2. An Euler path or cycle in a graph in the plane is approximable by embeddings if and only if it
does not have transversal self-intersections (hence any Euler graph in the plane has an Euler cycle, approximable by
embeddings).

The notion of approximability by embeddings appeared in studies of embeddability of compacta into R
2 (see

[12, 14, 11], for recent surveys see [7, §9], [2, §4], [8, §1], we return to this topic in the end of §1.) There exists an
algorithm of checking whether a given simplicial map is approximable by embeddings (see [13], or else Simple-minded
Criterion 4.1 below). A more convenient to apply criterion for approximability by embeddings of a simplicial path
in the plane was proved in [6] (Theorem 1.3.I below, generalizing Example 1.2). The main result of this paper is an
analogous criterion for approximability by embeddings of a cycle in the plane (Theorem 1.3.S below, also generalizing
Example 1.2). These criteria assert that, in some sense, transversal self-intersections are the only obstructions to
approximability by embeddings. Clearly, this is not true literally [12], and there is no Kuratowsky-type criterion.

We state our criterion (Theorem 1.3) in terms of the derivative of a path [5], [6, ”the operation d”]. Let us give the
definition (Fig. 1). First let us define the derivative G′ of a graph G (it is a synonym for line graph and dual graph).
The vertex set of the graph G′ is in 1-1 correspondence with the edge set of G. For an edge a ⊂ G denote by a′ ∈ G′

the corresponding vertex. Vertices a′ and b′ of G′ are joined by an edge if and only if the edges a and b are adjacent
in G. Note that the derivatives G′ and H ′ of homeomorphic but not isomorphic graphs G and H are not necessarily
homeomorphic.

Now let ϕ be a path in the graph G given by the sequence of vertices x1, . . . , xk ∈ G, where xi and xi+1 are
joined by an edge. Then (x1x2)

′, . . . , (xk−1xk)
′ is a sequence of vertices of G′. In this sequence replace each segment

(xixi+1)
′, (xi+1xi+2), . . . , (xj−1xj)

′ such that (xixi+1)
′ = (xi+1xi+2)

′ = · · · = (xj−1xj)
′ by a single vertex. The

obtained sequence of vertices determines a path in the graph G′. This path ϕ′ is called the derivative of the path ϕ.
A 5-od (the cone over 5 points) is a planar graph whose derivative is the Kuratowsky graph, which is not planar.

But if G ⊂ R
2 and the path ϕ does not have transversal self-intersections, then the image of the map ϕ′ is a planar

subgraph G′
ϕ ⊂ G′ (we give the construction of a natural embedding G′

ϕ → R
2 in §2, Definition of N ′). Change G′ to

the image G′
ϕ and ϕ′ to its onto restriction ϕ′ : I → G′

ϕ. Define the k-th derivative ϕ(k) inductively. For a cycle ϕ the
definition of the derivative cycle ϕ′ is analogous.
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Figure 1. Derivatives of graphs and paths

An example to be used in the sequel is that ϕ′ = ϕ for a standard d-winding ϕ : S1 → S1 with d 6= 0. Clearly, ϕ′

is an embedding for any Euler path or cycle ϕ. Thus Example 1.2 is indeed a specific case of the following theorem.

Theorem 1.3. I) [6] Let ϕ : I → R
2 be a PL map, which is simplicial for some triangulation of I with k vertices.

The map ϕ is approximable by embeddings if and only if for each i = 0, . . . , k the i-th derivative ϕ(i) does not contain
transversal self-intersections.

S) Let ϕ : S1 → R
2 be a PL map, which is simplicial for some triangulation of S1 with k vertices. The map ϕ is

approximable by embeddings if and only if for each i = 0, . . . , k the i-th derivative ϕ(i) neither contains transversal
self-intersections nor is the standard winding of degree d 6∈ {−1, 0, 1}.

We prove both 1.3.I and 1.3.S in §2. Our proof of 1.3.I is simpler than the one given in [6].
In §3 we apply Theorem 1.3 to prove the following criterion.

Corollary 1.4. A PL map ϕ : I → R
2 is approximable by embeddings if and only if one of the following equivalent

conditions holds:
D) (the deleted product property) There is a map {(x, y) ∈ I × I x 6= y} → S1 such that its restriction to the set

{(x, y) ∈ I × I : ϕx 6= ϕy} is homotopic to the map given by the formula ϕ̃(x, y) = ϕx−ϕy
‖ϕx−ϕy‖ ;

V) the van Kampen obstruction (defined in §3) v(ϕ) = 0.

The criterion 1.4.V, although more difficult to state, is more easy to apply than 1.3.I and 1.4.D. In Corollary 1.4
the arc I cannot be replaced by S1: the standard 3-winding is a counterexample [8]. Obstructions like 1.4.D and 1.4.V
appear in the related theory of approximability by link maps, i. e. by maps with disjoint images, but the criteria
analogous to 1.3.I and 1.4.DV are not true (Example 3.3 below). In §3 we show that the n-dimensional generalizations
of conditions 1.4.D and 1.4.V are equivalent for any PL maps ϕ : Kn → R

2n (Proposition 3.2 below).
In §4 we generalize criteria 1.3 and 1.4 to PL maps ϕ : K → R

2, where K is an arbitrary graph [16]. We prove the
following theorem (see Definition of the derivative in §2).

Theorem 1.5. Let T be a graph without vertices of degree > 3. Suppose that T has k vertices. A simplicial map
ϕ : T → S1 ⊂ R

2 is approximable by embeddings if and only if the van Kampen obstruction v(ϕ) = 0 and ϕ(k) does
not contain standard windings of degree d 6= ±1, d odd.

Conjecture 1.6. Theorem 1.5 is true for a simplicial map ϕ : K → G ⊂ R
2, where K and G are arbitrary graphs.

If Conjecture 1.6 is true, then a simplicial map ϕ : T → R
2 of a tree T is approximable by embeddings if and only

if v(ϕ) = 0 [2, Problem 4.5].

Conjecture 1.7. A piecewise linear path ϕ : I → R
2 is approximable by embeddings if and only if for each pair of

arcs I1, I2 ⊂ I such that I1 ∩ I2 = ∅ the pair of restrictions ϕ : I1 → R
2 and ϕ : I2 → R

2 is approximable by link maps
(i. e. maps with disjoint images).

We conclude §1 by some words on the history of the notion of approximability by embeddings. We define the
decomposition of a 1-dimensional compactum into an inverse limit and show how the notion of approximability by
embeddings appears in studies of planarity of this compactum. We do not use this definition in our paper. To give an
example, let us construct the 2-adic van Danzig solenoid. Take a solid torus T1 ⊂ R

3. Let T2 ⊂ T1 be a solid torus
going twice along the axis of the torus T1. Analogously, take T3 ⊂ T2 going twice along the axis of T2. Continuing
in the similar way, we obtain an infinite sequence of solid tori T1 ⊃ T2 ⊃ T3 ⊃ . . . The intersection of all tori Ti is a
1-dimensional compactum and is called the 2-adic van Danzig solenoid. By the inverse limit of an infinite sequence of

graphs and simplicial maps between them K1 K2
ϕ1

oo K3
ϕ2

oo . . .
ϕ3

oo we mean the compactum

C = { (x1, x2, . . . ) ∈ l2 : xi ∈ Ki and ϕixi+1 = xi }.
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One can see from our construction that for the van Danzig solenoid all Ki
∼= S1 and all ϕi are 2-windings. It can

be proved that any 1-dimensional compactum can be represented as an inverse limit. Such representation shows that
any 1-dimensional compactum can be embedded into R

3. It also gives an easy sufficient condition to planarity: for
each positive integer i there should exist an embedding fi : Ki → R

2 such that the map fi ◦ ϕi is approximable by
embeddings and fi+1 is 2−i-close to fi ◦ ϕi.

2. Proofs

Theorem 1.3 follows from Example 1.1 and Lemmas 2.1, 2.2.A (for K ∼= I, S1) and 2.3, which are interesting results
in themselves.

Lemma 2.1. (for K ∼= I see [6]) Suppose that a simplicial map ϕ : K → G ⊂ R
2 of a graph K ∼= S1 or K ∼= I does

not have transversal self-intersections. If ϕ′ is approximable by embeddings, then ϕ is approximable by embeddings.

Lemma 2.2. A) [6] If a simplicial map ϕ : K → G ⊂ R
2 is approximable by embeddings, then the map ϕ′ is

approximable by embeddings.
V) If a simplicial map ϕ : K → G ⊂ R

2 is approximable by mod 2-embeddings, then the map ϕ′ is approximable
by mod 2-embeddings.

Here a mod 2-embedding is a general position map f : K → R
2 such that for each pair a, b of disjoint edges of K

the set fa∩fb consists of an even number of points. Definition of the derivative ϕ′ needed for Lemma 2.2 is presented
below

Lemma 2.3. Let ϕ : S1 → G be a PL map, which is simplicial for some triangulation of S1 with k vertices. Then
either the domain of ϕ(k) is empty or ϕ(k) is a standard winding of degree d 6= 0.

This number d can be considered as the generalization of the degree of any simplicial map S1 → G. So it is
interesting to get the solution of the following problem (it may also make criteria 1.3 and 1.5 more easy to apply).

Problem 2.4. Find an easy algorithm for calculation of the degree of the winding ϕ(∞) for a given PL map ϕ : S1 → G.

Futher we use the following generalization of the definition of the derivative of a path stated in §1.

Definition (Definition of the derivative [6], see Fig. 1 and a part of Fig. 4). First let us construct the graph K ′
ϕ, which

is the domain of the derivative ϕ′. By a ϕ-component of the graph K we mean any connected component α of ϕ−1a
mapped onto a, for some edge a ⊂ G. The vertex set of K ′

ϕ is in 1-1 correspondence with the set of all ϕ-components.
For a ϕ-component α ⊂ K denote by α′ ∈ K ′

ϕ the corresponding vertex. Vertices α′ and β′ are joined by an edge
in K ′

ϕ if and only if α ∩ β 6= ∅. The derivative ϕ′ : K ′
ϕ → G′ is a simplicial map defined on the vertices K ′

ϕ by the
formula ϕ′α′ = (ϕα)′. Change ϕ′ to its onto restriction ϕ′ : K ′

ϕ → ϕ′K ′
ϕ. (In the original definition [6] G′ is denoted

by D(G), ϕ′ by d[ϕ] and K ′
ϕ by D(ϕ,K).)

Proof of 2.3. We say that a simplicial map ϕ : K → G is ultra-nondegenerate, if for each edge a ⊂ K the image ϕa is
an edge of G and for each pair a, b ⊂ K of adjacent edges we have ϕa 6= ϕb. Denote by |K| the number of vertices
in a graph K. Clearly, if K ∼= S1, then |K ′

ϕ| ≤ |K|, and |K ′
ϕ| = |K| only if ϕ is ultra-nondegenerate. Therefore it

suffices to prove the lemma for this latter case (because the cases K ′
ϕ
∼= I or K ′

ϕ is a point are trivial). In this case
the lemma is obvious, but we give the proof.

Let us prove that if an ultra-light simplicial onto map ϕ : K → G of the graph K ∼= S1 is not a standard winding
of a nonzero degree, then |G′| > |G|. Note that for ultra-nondegenerate ϕ : S1 → G the graph G does not contain
hanging vertices. If the degree of each vertex of G is two, then ϕ is an ultra-nondegenerate simplicial map S1 → S1,
consequently ϕ is a standard winding, that contradicts to our assumption. So G contains a vertex of degree at least
3. Then by the above the number of edges of G is greater than the number of vertices, hence |G′| > |G|. Since for a
simplicial onto map ϕ : K → G we have 1 ≤ |G| ≤ |K|, it follows that |G|, |G′|, . . . , |G(k)| ≤ k (recall that we define
ϕ′ to be an onto map). This yields that one (and then k-th) of the derivatives ϕ, . . . , ϕ(k) is a standard winding of a
nonzero degree, because otherwise we obtain 1 + k ≤ |G| + k ≤ |G(k)| ≤ k. �

Now let us give the proposed construction of the embedding G′
ϕ → R

2. It is more convenient for us to consider
thickenings of the graphs rather than embeddings of the graphs into the plane. Then the proposed construction is
equivalent to the construction of the derivative of a thickening (Definition of N ′ below). Further we assume that a
thickening N of the graph G in the plane (i. e., a regular neighbourhood of G ⊂ R

2) is fixed. We also assume that a
handle decomposition (denoted by S)

N =
⋃

x∈vertex set of G

Nx ∪
⋃

a∈edge set of G

N(a)

corresponding to the graph G is also fixed, where Nx are 2-discs and N(a) are joining them strips. Denote by Na
the restriction Nx ∪ N(a) ∪ Ny of N to an edge a = xy. Actually, we do not use the planarity of N in our proofs,
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N

Na∩b

N(b)

N(a)

N ′
a′b′

N ′

Figure 2. Derivative of a thickening

the thickening N can be assumed to be just orientable (orientability is needed for Example 1.1). Let us state the
definition of the derivative N ′ of a thickening N . This thickening N ′ depends on the simplicial map ϕ : K → G ⊂ N
and is well-defined only if ϕ does not contain transversal self-intersections. Moreover, for an arbitrary K we must
also assume that there are no pairs of arcs i, j ⊂ K (not necessarily disjoint!) such that the intersection ϕi ∩ ϕj is
transversal.

Definition (Definition of N ′, see Fig. 2). Let ϕ : K → G ⊂ N be a simplicial map such that for any pair of arcs
i, j ⊂ K the intersection ϕi ∩ ϕj (maybe empty) is not transversal. Let us construct discs N ′

a′ for each vertex a′ ∈ G′

and strips N ′
(a′b′) for each edge a′b′ ⊂ G′. Then N ′ together with its handle decomposition S′ is defined by the formula

N ′ =
⋃

N ′
a′ ∪

⋃

N ′
(a′b′). Here we take N ′

a′ = N(a) for each edge a ⊂ G. For each pair a, b ⊂ G of adjacent edges such

that (ϕ′)−1(a′b′) 6= ∅ we join the two discs N ′
a′ and N ′

b′ by a narrow strip N ′
(a′b′) in Na∩b. Since the intersection of

arcs a ∪ b and c ∪ d is not transversal for any pair of adjacent edges c, d ⊂ K, it follows that we can choose the strips
N ′

(a′b′) so that they do not intersect for distinct a′b′.

This definition can also be considered as a construction of an embedding N ′ → N , and also G′
ϕ → R

2. Note that
S′ and the topological type of N ′ do not depend on the choice of the strips N ′

(a′b′) in our definition. The alternative

definition of the derivative thickening D(N) in [6] does not depend also on the map ϕ. The thickening N ′ of our paper
means the subthickening of D(N) of [6], corresponding to the subgraph G′

ϕ ⊂ G′.

Clearly, for investigation of approximability by embeddings of simplicial maps K → G ⊂ R
2 it suffices to consider

only the approximations f : K → N . Now we are going to reduce the problem of approximability by embeddings of a
given map to the problem of existance of an embedding close to it in some sense (S-close to it).

Definition (Definition of an S-approximation, cf. [6]). A map f : K → N is an S-approximation of the map ϕ, or f
is S-close to ϕ, if the following conditions hold:

(1) fx ⊂ Nϕx for each vertex or edge x of K
(2) x ∩ f−1N(ϕx) is connected for each edge x of K with nondegenerate ϕx.

Proposition 2.9 in [6] asserts that the map ϕ : K → G is approximable by embeddings if and only if there is an
embedding f : K → N , S-close to ϕ.

A PL map ϕ : K → N is degenerate, if ϕc is a point for some edge c ⊂ K. Now let us prove the following
easy Contracting Edge Proposition 2.5 that in some sense allows us to assume that in 2.1 and 2.2 the map ϕ is
nondegenerate.

Proposition 2.5 (Contracting Edge Proposition). Let ϕ : K → G be a simplicial map such that ϕc is a point for
some edge c ⊂ K. Let K/c be the graph obtained from K by contracting the edge c, and let ϕ/c : K/c → G be the
corresponding map. Then

D) K ′
ϕ/c = K ′

ϕ, G
′
ϕ = G′

ϕ/c and (ϕ/c)′ = ϕ′.

A) for K ∼= S1 or K ∼= I the map ϕ/c is approximable by embeddings if and only if ϕ is approximable by embeddings.
K) for an arbitrary K if ϕ is approximable by embeddings, then ϕ/c is approximable by embeddings.
V) If ϕ is approximable by mod 2-embeddings, then ϕ/c is approximable by mod 2-embeddings.

Proof of 2.5. D) is obvious.
A) Let us prove the direct implication. Let f : K/c→ N be an embedding, S-close to ϕ/c. Let a ⊂ K be an edge

adjacent to c (if c is a connected component of K, then the proposition is obvious). Add a new vertex to the edge a
of the graph K/c (Fig. 3.a). Since K ∼= S1 or K ∼= I, it follows that the obtained graph is isomorphic to K and the
embedding f : K → N is the required. The reverse implication is a specific case of statement K).



ON APPROXIMABILITY BY EMBEDDINGS OF CYCLES IN THE PLANE 5

fa
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fc

fa fa

fb fb

fc fK f(K/c)

a b

Figure 3. Moves for degenerate maps

ϕ̄ ϕ̄′
ϕ ϕ′

K̄ ′
ϕK K ′

ϕ

G G′

Figure 4. Semi-derivatives of a simplicial map

K) Let f : K → N be an embedding, S-close to ϕ. Make the move shown in Fig. 3.b. We obtain an embedding
f̄ : K/c→ N , S-close to ϕ/c.

V) Let f be a mod 2-embedding, S-close to ϕ. Make the move shown in Fig 3.b. We obtain an S-close to ϕ/c
map f̄ : K/c→ N . It suffices to prove that |f̄a∩ f̄ b| = 0 (mod 2) for each pair of disjoint edges a, b ⊂ (K/c). Indeed,
both a and b are also edges of K, and at least one of them is not adjacent to c (because a and b are disjoint in K/c).
If neither a nor b is adjacent to c, then |f̄a ∩ f̄b| = |fa ∩ fb| = 0 (mod 2). If, for example, b ∈ K is adjacent to c and
a is not adjacent to c, then |f̄a ∩ f̄ b| = |fa ∩ fb| + |fa ∩ fc| = 0 (mod 2), that proves the proposition. �

Degenerate maps appear in our proof of 2.1 and 2.2 even if the map ϕ : K → G is nondegenerate. We are going

to construct a graph K̄ ′
ϕ and a pair of (degenerate) simplicial maps G K̄ ′

ϕ

ϕ̄
oo

ϕ̄′

// G′ that can be obtained from

ϕ and ϕ′ respectively by the operation from Contracting Edge Proposition 2.5 (this is true under some assumptions
on ϕ, we present the details below). Together with the construction of the embedding N ′ → N (see Definition of N ′

above) this immediately proves 2.1 (Fig. 4, 5, 6).

Definition (Definition of ϕ̄ and ϕ̄′, see Fig. 4). Suppose that the map ϕ is nondegenerate and K does not have vertices
of degree 0. Take the disjoint union of all ϕ-components of K (see Definition of ϕ′). Join by an edge any two vertices
belonging to distinct ϕ-components and corresponding to the same vertex of K. Denote the obtained semi-derivative
graph by K̄ ′

ϕ. Thus a ϕ-component α ⊂ K is also a subgraph of K̄ ′
ϕ denoted by ᾱ′. Further we identify the points of

α and ᾱ′. Let the simplicial maps ϕ̄ and ϕ̄′ be the evident projections K̄ ′
ϕ → G and K̄ ′

ϕ → G′ respectively, defined on

the vertex sets by ϕ̄x = ϕx and ϕ̄′x = (ϕα)′, where the vertex x ∈ K̄ ′
ϕ belongs to the ϕ-component ᾱ′.

Proof of 2.1. By Contracting Edge Proposition 2.5.D,A the map ϕ can be assumed to be nondegenerate. We also may
assume that K does not have vertices of degree 0. It can be easily checked that ϕ and ϕ′ can be obtained from ϕ̄ and
certain restriction of ϕ̄′ respectively by the operation from Contracting Edge Proposition 2.5. If any two ϕ-components
have at most one common point, then ϕ′ can be obtained from ϕ̄ itself in this way. But for K ∼= S1 this asumption is
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N

fK̄ ′
ϕ

N ′

Figure 5. Construction of the S-approximation

Na Nb
fK̄ ′

ϕ

N̄(ab)N̄a N̄b

Figure 6. Construction of the handle decomposition

not satisfied only if K has two ϕ-components. Evidently, the map ϕ is approximable by embeddings in this case. So
it suffices to prove that

(*) if ϕ̄′ is approximable by embeddings, then ϕ̄ is approximable by embeddings.

We prove (∗) for an arbitrary graphK. If ϕ̄′ is approximable by embeddings, then there is a S′-close to ϕ̄′ embedding
K̄ ′
ϕ → N ′. Define the embedding f : K̄ ′

ϕ → N to be the composition of this embedding and the embedding N ′ → N
constructed in Definition of N ′ (Fig. 5, where this construction is applied to the map ϕ from Fig. 4). Clearly, there
exists a new handle decomposition N =

⋃

N̄a∪
⋃

N̄(ab), denoted by S̄, such that f is an S̄-approximation of ϕ̄ (Fig. 6,
cf. [6, Proposition 4.9], or see some generalization of the decomposition, constructed in the proof of Lemma 4.5.D.)
Then f : K̄ ′

ϕ → N̄ (where N̄ is N with the new handle decomposition S̄) is an embedding, S̄-close to ϕ̄, that proves
the lemma. �

The same idea is used in the proof of Lemma 2.2.A,V. We take a general position map f : K̄ ′
ϕ → N , S-close to ϕ̄,

and construct its semi-derivative f̄ ′ : K̄ ′
ϕ → N ′, S-close to ϕ̄′ (Fig. 7). Then we prove that if f is an embedding, then

f̄ ′ is also an embedding (Fig. 8).

Definition (Definition of f̄ ′, see Fig. 7, where this construction is applied to the map ϕ from Fig. 4). Let K be a
graph without vertices of degree 0. Let ϕ : K → G ⊂ N be a nondegenerate simplicial map without transversal self-
intersections. Let f : K → N be an S-approximation of ϕ. Then the semi-derivative S′-approximation f̄ ′ : K̄ ′

ϕ → N ′

is constructed as follows. For each edge a ⊂ G fix a homeomorphism ha : Na → N ′
a′ such that for each edge b adjacent

to a we have ha(Na ∩N(b)) ⊂ N ′
(a′b′). Define f̄ ′ on each ϕ-component ᾱ′ ⊂ K̄ ′

ϕ by the formula f̄ ′ |ᾱ′ = hϕαf |α Now

let us define f̄ ′ on each edge xy ⊂ K̄ ′
ϕ joining two distinct ϕ-components X̄ ′ and Ȳ ′. Take an edge a ⊂ X̄ ′ containing

x. Identify X̄ ′ and X (see Definition of ϕ̄ and ϕ̄′). Then a is also an edge of K and x is also a vertex of K. Denote by
x̄ the arc a ∩ f−1Nϕx. Define the arc ȳ analogously. Decompose the edge xy into three segments xx1, x1y1 and y1y.
Let f̄ ′ homeomorphically map xx1 onto hϕXf ȳ, y1y onto hϕY fx̄, and x1y1 onto the rectilinear segment in N ′

(ϕX ϕY )

joining the points f̄ ′x1 and f̄ ′y1. Thus the map f̄ ′ : K̄ ′
ϕ → N ′ is constructed.

Note that if f is an embedding then there is a simpler alternative construction of f̄ ′, in some sense reverse to the
construction from the proof of Lemma 2.1. But this alternative construction is useless in the proof of Lemma 2.2.V, so
we do not present it in the paper. We prove 2.2.A,V only in case when the derivative N ′ is well-defined, i. e. K does
not contain pairs of arcs i, j such that ϕi ∩ ϕj is transversal. This is sufficient for the proof of Theorem 1.3 and 1.5.
In general case the proof is completely analogous, but one should use the definition of derivative D(N) from [6].

Proof of 2.2.A. By Contracting Edge Proposition 2.5.K we may assume that ϕ is nondegenerate. Take an embedding
f : K → N , S-close to ϕ. Then it suffices to show that the map f̄ ′ (see Definition of f̄ ′) is an embedding.
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fK

N

N ′

f̄ ′K̄ ′
ϕ

Figure 7. Semiderivative of an S-approximation

x1
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z̄

z1
x

z

y1
t1

y

t

J
I

haNa∩b

hbNa∩b
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Figure 8. Counting the number of crossings

Consider a pair of distinct edges xy, zt of K ′
ϕ. Denote the set f̄ ′(xy) ∩ f̄ ′(zt) by i. It suffices to show that

i = f̄ ′(xy ∩ zt). Denote by a′ = ϕ̄′x, b′ = ϕ̄′y, c′ = ϕ̄′z and d′ = ϕ̄′t. Without loss of generality we have the following
3 cases.

1) a′, b′, c′ and d′ are pairwise distinct. Since f̄ ′ is an S′-approximation, it follows that f̄ ′xy ⊂ N ′
a′b′ and f̄ ′zt ⊂ N ′

c′d′ ,
hence i = ∅.

2) (a′ = c′ and b′ 6= d′) or (a′ = b′ = c′ = d′). Then i ⊂ N ′
a′ , hence i = ha(fx̄ ∩ f z̄) (see the definition of ha and x̄

in Definition of f̄ ′, define z̄ analogously to x̄.) If y 6= t, then x̄ and z̄ are disjoint, so fx̄ ∩ f z̄ = ∅ and i = ∅. If y = t,
then i = ha(fy) = f̄ ′(xy ∩ zt).

3) a′ = c′, b′ = d′ and a′ 6= b′. In this case both xy and zt join the vertices of distinct ϕ-components. Let us prove
that xy and zt are disjoint. For example, assume that y = t. Then all the vertices x, y, z and t of K̄ ′

ϕ correspond to

the same vertex of K denoted by w. Denote by X and Z the ϕ-components of ϕ−1a = ϕ−1c such that x ∈ X̄ ′ and
z ∈ Z̄ ′. So the ϕ-components X and Z have a common point w, hence X = Z. So x, z ∈ X̄ ′ = Z̄ ′ correspond to
the same vertex w, hence x = z. We obtain y = t and x = z, then by the construction of K̄ ′

ϕ we get xy = zt, that
contradicts to the choice of these edges. So xy and zt are disjoint.

Let us show that in case (3) |i| = 0 (mod 2). Omit f̄ ′ from the notation of f̄ ′-images. Note that the homeomorphism
ha ◦ h

−1
b maps y1y and t1t onto x̄ and z̄ respectively (Fig. 8). First this implies that |i| = |I ∩ J |, where I = x̄ ∪ xy1

and J = z̄ ∪ zt1. Secondly this implies that the two pairs of points ∂I and ∂J are not linked in ∂(haNa∩b ∪N ′
(a′b′)).

Since I, J ⊂ haNa∩b ∪N(a′b′), it follows that |i| = |I ∩ J | = 0 (mod 2). So it remains to prove that |I ∩ J | ≤ 1, then
I ∩ J = ∅. This follows from

x̄ ∩ z̄ = ha(fx̄ ∩ f z̄) = ∅ xx1 ∩ zz1 = ha(f ȳ ∩ f t̄) = ∅ and |x1y1 ∩ z1t1| ≤ 1,

because x1y1 and z1t1 are rectilinear segments in N(a′b′). This completes the proof of the lemma. �

Proof of 2.2.V. By Contracting Edge Proposition 2.5.V it suffices to prove that if f : K̄ ′
ϕ → N is a mod 2-embedding,

S-close to ϕ, then the semi-derivative f̄ ′ is also a mod 2-embedding.
Take a pair of disjoint edges xy, zt of ϕ̄′ and consider the three cases from the proof of Lemma 2.2.A. Case 1) is

trivial. In case 2) we get f(xy) ∩ f(zt) ⊂ Na, hence |i| = |ha(fx̄ ∩ f z̄)| = |ha(f(xy) ∩ f(zt))| = |f(xy) ∩ f(zt)| = 0
(mod 2). In the proof of 2.2.A it is shown that in case 3) |i| = 0 (mod 2), thus Lemma 2.2.V is proved. �
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I∗ϕ

I∗

Figure 9. The Van Kampen obstruction
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fa

fx

fa

a b

Figure 10. ”The Reidemeister move”

3. The van Kampen obstruction

The van Kampen obstruction was invented by van Kampen in studies of embeddability of polyhedra in R
2n [2, 3,

4, 7, 8]. Let us give the definition of the van Kampen obstruction to approximability by embeddings of simplicial
paths. Our construction is more visual than that in the problem of embeddability. Let ϕ : I → R

2 be a simplicial
path (in Fig. 9 the constuction below is applied to the path from Fig. 1). Denote by x1, . . . , xk the vertices of I in
the order along I, and denote the edge xixi+1 by i. Let I∗ =

⋃

i<j−1

i × j be the deleted product of I. Paint red the

edges xi × j, j × xi, and the cells i × j of I∗ such that ϕxi ∩ ϕj = ∅, ϕi ∩ ϕj = ∅, and denote by I∗ϕ the red set.
Take a general position map f : I → R

2, sufficently close to ϕ. To each cell i × j of ”the table” I∗ put the number
vf (i× j) = |fi ∩ fj| (mod 2). Decompose I∗ along the red edges, let C1, C2, . . . , Cn be all the obtained components
such that ∂Ck ∩ ∂I∗ ⊂ I∗ϕ. Denote vf (Ck) =

∑

i×j⊂Ck

vf (i× j). The van Kampen obstruction (with Z2-coefficients) for

approximability by embeddings is the vector v(ϕ) = ( vf (C1), vf (C2), . . . , vf (Cn) ).
It can be shown easily that v(ϕ) does not depend on the choice of f [8], thus v(ϕ) = 0 is a necessary condition for

approximability by embeddings. It is easy to check that v(ϕ) 6= 0 for a PL path ϕ : I → R
2 containing a transversal

self-intersection. Thus Corollary 1.4.V follows from 1.3, 2.2.V and 3.1.

Proposition 3.1. The van Kampen obstruction v(ϕ) = 0 if and only if there is an S-close to ϕ general position
mod 2-embedding.

Proof of 3.1. The inverse implication of the proposition is obvious. The proof of the direct implication follows the
idea of [4]. We are going to use the cohomogical formulation of the van Kampen obstruction (see the paragraph before
Proposition 3.2 below for details). Let f : K → N be any general position S-approximation of ϕ. The ’Reidemeister

move’ shown in Fig. 10.a adds to vf the coboundary δ[x× a] of the elementary cochain from B2(K̃). Since v(ϕ) = 0,
it follows that using some such ’moves’ we can obtain a map f : K → N such that vf = 0. Then f is the required
mod 2-embedding, because vf = 0 yields that |fa ∩ fb| = 0 (mod 2) for any pair of disjoint edges a, b of K. �

Now we are going to prove that the conditions 1.4.V and 1.4.D are equivalent (Proposition 3.2). We are going to
replace Z2-coefficients in the van Kampen obstruction by Z-coefficients, so Proposition 3.2 implies only that 1.4.D =⇒
1.4.V , but this is sufficient for the proof of Corollary 1.4. We prove Proposition 3.2 in the most general situation, so
we need some more definitions.

Let K be an n-polyhedron with a fixed triangulation. Let ϕ : K → G ⊂ R
2n be a simplicial map. Denote

by σ and τ any n-dimensional simplices of this triangulation of K. By the deleted product of K we mean the set
K̃ =

⋃

{ σ × τ : σ ∩ τ = ∅ }. Fix the natural orientation of each cell σ × τ (a positive basis of σ × τ consists of
the vectors e1, . . . , e2n, where e1, . . . , en form a positive basis of σ and en+1, . . . , e2n form a positive basis of τ). Let
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Figure 11. A pair of maps not approximable by link maps

K∗ = K̃/Z2 be the factor under antipodal Z2-action. Let K̃ϕ ⊂ K̃ be the subset K̃ϕ = { σ × τ : ϕσ ∩ ϕτ = ∅ } and

let K∗ϕ = K̃ϕ/Z2. For a general position map f : K → R
2n close to ϕ define a cochain vf ∈ Cn(K∗,K∗ϕ; Z) by the

formula vf (σ × τ) = fσ ∩ fτ . This cochain is well-defined, because fσ ∩ fτ = (−1)nfτ ∩ fσ and our Z2-action maps
σ × τ to (−1)nτ × σ. The class v(ϕ) = [vf ] ∈ Hn(K∗,K∗ϕ; Z) of this cochain does not depend on the map f and is
called the van Kampen obstruction to approximability of ϕ by embeddings. We say that the map ϕ : K → G ⊂ R

2n

satisfies the deleted product property if the map ϕ̃ : K̃ϕ → S2n−1 given by the formula ϕ̃(x, y) = ϕx−ϕy
‖ϕx−ϕy‖ extends to

an equivariant map K̃ → S2n−1. Evidently, this definition of the deleted product property is equivalent to 1.4.D for
n = 1 and K ∼= I.

Proposition 3.2. A PL map ϕ : Kn → R
2n satisfies the deleted product property if and only if the van Kampen

obstruction (with Z-coefficients) v(ϕ) = 0.

Proof of 3.2. We are going to show that the van Kampen obstruction is a complete obstruction to an equivariant
extension of ϕ̃ : K̃ϕ → S2n−1 to a map K̃ → S2n−1.

Take a general position map f : K → R
2n close to ϕ and define the equivariant map f̃ : K̃ϕ∪ sk2n−1 K̃ → S2n−1 by

the formula f̃(x, y) = fx−fy
|fx−fy| . By general position it follows that f̃ is well-defined. Since f is close to ϕ, it follows that

f̃ |K̃ϕ is homotopic to ϕ̃. Evidently, then ϕ̃ extends to an equivariant map K̃ → S2n−1 if and only if f̃ |K̃ϕ extends to

an equivariant map K̃ → S2n−1.
Consider a cell σ × τ ⊂ K̃ − K̃ϕ, where σ, τ ⊂ K are n-dimensional cells. The map f̃ extends to σ × τ if and only

if deg f̃ |∂(σ × τ) = 0. If f̃ extends to σ× τ then it extends also to τ × σ in equivariant way, because f̃ is equivariant.

One can see that deg f̃ |∂(σ × τ) = fσ ∩ fτ = vf (σ × τ). So the map f̃ extends to an equivariant map K̃ → Sn−1 if
and only if vf = 0.

Now let g : K̃ϕ ∪ sk2n−1 K̃ → S2n−1 be an equivariant map such that gx = f̃x for each x ∈ K̃ϕ ∪ sk2n−2 K̃. Define
the cochain vg ∈ C2n(K∗,K∗ϕ; Z) by the formula vg(σ) = deg g |∂σ for each 2n-dimensional cell σ. Let σ ⊂ K̃ − K̃ϕ

be a cell of dimension 2n − 1. Take a disjoint union σ ⊔ σ′ of two copies of σ and paste σ to σ′ by ∂σ = ∂σ′. Let
dσ be a map of the obtained (2n − 1)-sphere to S2n−1 given by the formula dσx = fx for x ∈ σ and dσx = gx for
x ∈ σ′. Define the cochain vfg ∈ C2n−1(K∗,K∗ϕ; Z) by the formula vfg(σ) = deg dσ (we fix the orientation of σ ∪ σ′

restricted to the positive orientation of σ′). Then, clearly vg − vf = δvfg.
The obtained formula implies that the cohomological class [vg] does not depend on the choice of an equivariant map

g : K̃ϕ ∪ sk2n−1 K̃ → S2n−1 and coincides with the van Kampen obstruction v(ϕ) (with Z-coefficients). This proves
that the condition v(ϕ) = 0 in the proposition is necessary. The obtained formula and the construction of vfg above

shows that if v(ϕ) = 0 then vg = 0 for some g : K̃ϕ ∪ sk2n−1 K̃ → S2n−1, hence f̃ |K̃ϕ extends to an eguivariant map

K̃ → S2n−1. So the proposition is proved. �

Example 3.3. (cf. [15, 1]) There exists a pair of PL paths ϕ : I → R
2, ψ : I → R

2 (Fig. 11, where a pair of paths f ,
g, close to them, is shown), not approximable by link maps (i. e., maps with disjoint images) and such that:

V) The van Kampen obstruction v(ϕ, ψ) = 0.

D) The map Φ : { (x, y) ∈ I × I |ϕx 6= ψy } → S1 given by Φ(x, y) = ϕx−ψy
‖ϕx−ψy‖ homotopically extends to a map

I × I → S1.
I) The pair ϕ′, ψ′ is approximable by link maps.
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Proof of 3.3. Let K,L ∼= I are the graphs with the vertices k1, . . . , k5 and l1, . . . , l7, let G be the graph with vertices
a1, . . . , a6 and edges a1a2, a1a3, a1a4, a1a5, a2a3, a2a4 and a2a6. The required simplicial maps ϕ, ψ are given by the
formulae ϕk1 = a1, ϕk2 = a2, ϕk3 = a3, ϕk4 = a1, ϕk5 = a2 and ψl1 = a5, ψl2 = a1, ψl3 = a2, ψl4 = a4, ψl5 = a1,
ψl6 = a2, ψl7 = a6. Consider the pair of S-approximations f and g of ϕ and ψ respectively shown in Fig. 11. One
can see that |fi ∩ gj| = 0 (mod 2) for any pair of edges i ⊂ K, j ⊂ L. This implies both 3.3.V and 3.3.D (it is shown
analogously to the proof of 1.4, see also Proposition 3.1). The proof of 3.3.I is a direct calculation. Let us prove that
the pair ϕ, ψ is not approximable by link maps. Assume the converse. Let K13,K35 ⊂ K and L14, L47 ⊂ L be the arcs
between the points k1 and k3, k3 and k5, l1 and l4, l4 and l7 respectively. Take a small neighbourhood of ϕK ∪ ψL in
the plane and fix its handle decomposition S. Denote by A1, A2 and A the discs of S corresponding to the vertices a1,
a2 and to the edge a1a2 respectively. By the analogue of the Minc Proposition (see the paragraph after Definition of
an S-approximation in §2) there are two S-approximations f, g of ϕ and ψ respectively, having disjoint images. Since
fK13 ∩ gL = ∅, it follows that the pairs of points gL14 ∩ ∂(A1 ∪A) and gL47 ∩ ∂(A1 ∪A) are not linked in ∂(A1 ∪A).
Analogously, gL14 ∩ ∂A2 and gL47 ∩ ∂A2 are not linked in ∂A2. So gL14 ∩ ∂(A1 ∪A2 ∪A) and gL47 ∩ ∂(A1 ∪A2 ∪A)
are not linked in ∂(A1 ∪A2 ∪A). Then g cannot be an S-approximation of ψ. This contradiction proves that ϕ and
ψ are not approximable by link maps. �

4. Variations

The following Simple-minded Criterion 4.1 for approximability by embeddings gives an algorithm of checking
whether a given nondegenerate map is approximable by embeddings (another algorithm is given in [13]).

Proposition 4.1. Simple-minded Criterion 4.1 Let ϕ : K → G ⊂ R
2 be a nondegenerate simplicial map of a graph

K, i. e. for each edge a of K the image ϕa is not a vertex. Replace each edge a ⊂ G by i close multiple edges in R
2,

if ϕ−1a consists of i edges. Denote by Ḡ ⊂ R
2 the obtained graph and by π : Ḡ → G the evidently defined projection.

The map ϕ is approximable by embeddings if and only if there exists an onto map ϕ̄ : K → Ḡ without transversal
self-intersections and such that π ◦ ϕ̄ = ϕ.

The proof is trivial (we do not present the details since we do not use this criterion). There exists a purely
combinatorial proof of Theorem 1.3, based on Criterion 4.1. Criterion 4.1 and all the other our previous results remain
true, if we replace R

2 by an arbitrary orientable 2-manifold N .
There exists an infinite number of PL maps ϕ : T → T ⊂ R

2, where T is letter ”T” (a simple triod), not approximable
by embeddings and such that ϕ′ and any simplicial restriction of ϕ are approximable by embeddings (for the only
embedding T ′ → R

2). So there are no criteria like 1.3.I,S for K 6∼= I, S1.
In the rest of the paper we prove Theorem 1.5, generalizing both 1.3 and 1.4. For the proof we need the following

Lemma 4.2.T, Lemma 4.5 and Lemma 4.6, analogous to Lemmas 2.3, 2.1 and 2.2 respectively.
To state Lemma. 4.2 we need the following definitions. We shall say that ϕ contains a simple triod, if there is a

triod T ⊂ K with the edges t1, t2, t3 such that the arcs ϕt1, ϕt2, ϕt3 have a unique common point. We shall say that
ϕ identifies triods, if it contains two disjoint simple triods T1, T2 ⊂ K such that ϕT1 = ϕT2. Note that v(ϕ) 6= 0 for
a map ϕ identifying triods. We shall say that an onto map ϕ : K → G is a standard winding, if both K and G are
homeomorphic to disjoint unions of circles (may be, K = G = ∅) and ϕ |S is a standard winding of a nonzero degree
for each circle S ⊂ K. Denote by Σ(ϕ) = { x ∈ K : |ϕ−1ϕx| ≥ 2 } the singular set of the map ϕ.

Lemma 4.2. (cf. Lemma 2.3) Let ϕ : K → G be a simplicial map of a graph K with k vertices.
T) Suppose that for each i = 0, . . . , k the derivative ϕ(i) does not contain simple triods; then ϕ(k) is a standard

winding.
I) Suppose that for each i = 0, . . . , k the derivative ϕ(i) does not identify triods; then Σ(ϕ(k)) is a disjoint union of

circles and ϕ(k)
∣

∣

Σ(ϕ(k)) is a standard winding.

Proof of 4.2.T. We are going to use the notation from the proof of Lemma 2.3. Let us show that |K| ≥ |K ′
ϕ| for a

simplicial map ϕ : K → G containing no simple triods. We also prove that |K| = |K ′
ϕ| only if K is homeomorphic to a

disjoint (maybe empty) union of circles and ϕ is ultra-nondegenerate. Then it suffices to prove the lemma for this latter
specific case. Indeed, since ϕ does not contain simple triods, it follows that each vertex of the graph K belongs to at
most two ϕ-components of the graph. On the other hand, each ϕ-component contains an edge, and hence it contains
at least two vertices. This yields that the number of vertices of K is greater or equals to the number of ϕ-components,
i. e. |K| ≥ |K ′

ϕ|. We have the equation here if and only if (1) each vertex of K belongs to two ϕ-components and (2)
each ϕ-component contains exactly two vertices. The condition (2) means that ϕ is ultra-nondegenerate. But for an
ultra-nondegenerate map the condition (1) yields that the degree of each vertex of K is 2, so K is a disjoint union of
circles. Now note that for any two components A,B ⊂ K we have ϕ′A′ ∩ ϕ′B′ = (ϕA ∩ ϕB)′. Since A,B ∼= S1 and
ϕ is ultra-nondegenerate, it follows that ϕA ∩ ϕB is always either empty or a circle or a disjoint union of arcs and
points. Moreover, ϕA ∩ ϕB is a circle if and only if ϕA = ϕB. If ϕA ∩ ϕB is either empty or a disjoint union of arcs
and points, then ϕ(k)A and ϕ(k)B are disjoint. So the images ϕ(k)A and ϕ(k)B either are disjoint or coincide. By
Lemma 2.3 this yields that ϕ(k) is a standard winding. �
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We do not use Lemma 4.2.I and prove it after the proof of Theorem 1.5. Lemma 4.2.I may be helpful in the proof
of Conjecture 1.6.

In order to prove Theorem 1.5 we need the following extension of the techniques from §2. As in §2, we fix an
orientable thickening N of the graph G ∼= S1. We also assume that some orientable thickening M of the graph K
is fixed. Note that a thickening of a graph is uniquely defined by a local ordering of edges around each vertex [6].
We assume that K may contain loops and multiple edges. In this case by a simplicial map ϕ : K → G we mean
a continuous map that is linear on each edge of K and such that ϕx is a vertex of G for each vertex x ∈ K. We
assume that the handle decompositions M =

⋃

Mx ∪
⋃

M(a) and N =
⋃

Nx ∪
⋃

N(a) are fixed (in both formulae the
first union is over all vertices x and the second — over all edges a). By Mα and Nβ we denote the restriction of the
thickenings M and N to subgraphs α ⊂ K and β ⊂ G respectively. By an S-approximation of ϕ (or S-close to ϕ map)
we mean a general position map f : M → N such that for any vertex x ∈ K or edge x ⊂ K we have fMx ⊂ Nϕx and
for any edge x ⊂ K with nondegenerate ϕx the set Mx ∩ f−1N(ϕx) is connected (cf. Definition of S-approximation in
§2). If there is an S-close to ϕ embedding M → N then we shall say that ϕ is approximable by embeddings M → N .
By a mod 2-embedding we mean a general position map f : M → N such that f |Mx

is an embedding for each vertex
x ∈ K, f

∣

∣

M(a)
is an immersion for each edge a ⊂ K and |fa∩fb− f(a∩ b)| = 0 (mod 2) for any pair of distinct edges

a, b ⊂ K ⊂M . The last notion appears in the following generalization of Proposition 3.1.

Lemma 4.3. Let K be a graph such that the degree of each vertex of K is at most 3. Let ϕ : K → G ⊂ R
2 be a

simplicial map such that v(ϕ) = 0. Then there exist a mod 2-embedding M → N , S-close to ϕ, for some thickenings
M and N ⊂ R

2 of the graphs K and G respectively.

Proof of 4.3. [10] Let N be a regular neighbourhood of G in R
2. Let f : K → N be the map given by Proposition 3.1.

Since the degree of each vertex of K is at most 3, it follows that we can remove intersections of adjacent edges, using
the moves shown in Fig. 10.b. The obtained general position map K → N uniquely defines a thickening M of K and
extends to the required mod 2-embedding, S-close to ϕ. �

In [10] the move shown in Fig. 10.b is assumed to work for vertices of any degree, that is not right. The degree
restriction in Theorem 1.5 is used only in this step of the proof.

Now we are going to construct the derivative M ′
ϕ of the thickening M . This derivative is well-defined only under the

following conditions on ϕ, M and N . We shall say that ϕ : K → G is locally approximable by embeddings, if for each
vertex x ∈ G there exists an S-approximation f : M → N of ϕ such that f

∣

∣

f−1Nx
is an embedding. The following

lemma asserts that the thickenings M and N given by Lemma 4.3 satisfy these conditions.

Lemma 4.4 (Local Approximation Lemma). If there is a mod 2-embedding M → N which is S-close to the map
ϕ : K → G, then ϕ is locally approximable by embeddings M → N .

Proof of 4.4. Let f : M → N be an S-close to ϕ mod 2-embedding and let x be a vertex of the graph G. Modify
f in a small neighbourhood of ∂Nx to obtain a map f such that for each edge a ∋ x the set f−1(N(a) ∩ Nx) is a
single point Pa. Attach a ring R to the disc Nx along the circle ∂Nx. Let Q be the 2-polyhedron obtained from
Mϕ−1x∪ (K ∩f−1Nx) by identifying the points f−1Pa for each a ∋ x. Identify each point f−1Pa ∈ Q with Pa. Attach
the ring R to Q by the inclusions Pa ⊂ R. Let g : Q ∪ R → Nx ∪ R be the map given by the formulae gy = fy for
y ∈ Q and gy = y for y ∈ R. Clearly, g is a mod 2-embedding, i. e. there exists a triangulation of Q ∪ R such
that |ga ∩ gb| = 0 (mod 2) for each pair of disjoint edges a, b of this triangulation. This yields that Q ∪ R contains
neither Kuratowsky graph K5 nor K3,3. Clearly, Q ∪ R contains neither S2 nor the cone over S1 ⊔ D0. By the
well-known 2-polyhedron planarity criterion Q∪R is planar. So the embedding R ⊂ Nx ∪R extends to an embedding
h : Q ∪ R → Nx ∪ R. Clearly, h |Q : Q → Nx can be modified to an embedding f−1Nx → Nx, that extends to the
required S-approximation of ϕ. So ϕ is locally approximable by embeddings. �

The next step in the construction of M ′
ϕ is like Contracting Edge Proposition 2.5. We use a reduction to the case

of a nondegenerate map ϕ and then define the semi-derivative thickening.

Definition (Definition of ϕc). First let us define the graph Kc
ϕ, which is the domain of ϕc. A 0-component of K is

any connected component of ϕ−1x for a vertex x ∈ G. The vertex set of the graph Kc
ϕ is in 1-1 correspondence with

the set of all 0-components. Denote by αc the vertex corresponding to a 0-component α ⊂ K. The vertices αc and βc

are joined by an edge in Kc
ϕ if and only if K contains an edge with two ends belonging to α and β respectively. The

map ϕc : Kc
ϕ → G is a simplicial map given by the formula ϕcαc = ϕα.

Definition (Definition of M c). Let the map ϕ : K → G be locally approximable by embeddings. The thickening M c
ϕ

and its handle decomposition are defined as follows. For each 0-component α ⊂ K choose a maximal tree T ⊂ α. The
thickening M c

ϕ is the restriction of M to the subgraph (K −
⋃

α)∪
⋃

T . The discs of the handle decomposition of M c
ϕ

are defined as the subthickenings MT and the strips are defined as the strips of M not contained in the subthickenings
Mα and MT .
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Figure 12. The thickenings

Definition (Definition of M̄ ′, cf. Definition of ϕ̄′ in §2). Let the map ϕ : K → G be nondegenerate and locally
approximable by embeddings. The thickening M̄ ′

ϕ and its handle decomposition are defined as follows. Take a disjoint
union of Mα for all ϕ-components α ⊂ K. If ϕ-components α and β have a common vertex x, then join Mα and Mβ

by a strip attached to Mα and Mβ along the arcs Mx ∩M(a) and Mx ∩M(b) respectively, where a ⊂ α and b ⊂ β are

any edges containing x. The handle decomposition of M̄ ′
ϕ is obtained from those of Mα by adding the attached strips

to the decomposition.

We omit ϕ from the notation of M c
ϕ, M̄ ′

ϕ and M ′
ϕ. We denote the derivative of the thickening M by M ′ = ((M̄ c)′)c.

Note that M ′ is a thickening of a graph which may be different from K ′
ϕ only in multiplicity of some edges. Now

we are going to prove the following Lemma 4.5.C,D and Lemma 4.6.C,D, analogous to 2.5.A, 2.1, 2.5.V and 2.2.V
respectively.

Lemma 4.5. Let ϕ : K → G be locally approximable by embeddings. Then:
C) ϕc is approximable by embeddings M c → N if and only if ϕ is approximable by embeddings M → N ;
D) if G ∼= I or G ∼= S1 and ϕ̄′ is approximable by embeddings M̄ ′ → N ′, then ϕ̄ is approximable by embeddings

M̄ ′ → N .

Proof of 4.5.C. The sufficiency is obvious because M c ⊂ M (without handle decompositions). Let us prove the
necessity. Let f : M c → N be an embedding, S-close to ϕc. Identify M c and the subthickening MK̄ , where K̄ is the
unionwhere K̄ = (K −

⋃

α) ∪
⋃

T (see the notation in Definition of M c). Let us add to K̄ the edges a from α − T
one by one and extend the map f to the corresponding strips M(a) in an arbitrary way. We assert that an embedding
M → N , S-close to ϕ, can be constructed in this way. Indeed, assume that algorithm does not work, i. e. at some step
the obtained S-close to ϕ embedding MK̄ → N cannot be extended to M(a). Then the two arcs f∂M(a) are contained
in distinct connected components of Cl(Nϕα − fMK̄). Since the arcs f∂M(a) belong to one connected component of

Nϕα ∩ fMK̄ , it follows that there are only two possibilities: 1) K̄ contains a cycle γ such that ϕγ = ϕα and M(a)

joins the two components of ∂Mγ (Fig. 12.a); 2) K̄ contains an arc γ such that ϕα 6∈ ϕ∂γ and M(a) joins the two
components of ∂Mγ −M∂γ (Fig. 12.b). Clearly, in both cases 1) and 2) the map ϕ is not locally approximable by
embeddings. This contradicts the assumption of the lemma, so the algorithm above gives us the required embedding
M → N , S-close to ϕ. �

Proof of Lemma.4.5.D. Note that N ′ is well-defined because G ∼= S1 and hence ϕi ∩ ϕj is not transveral for any pair
of arcs i, j ⊂ K. Take an S-close to ϕ̄′ embedding M̄ ′ → N ′. Let f : M̄ ′ → N be the composition of this embedding
with the embedding N ′ → N (see Definition of N ′). It remains to construct a new handle decomposition S̄ of N such
that f is an S̄-approximation of ϕ̄.

Denote by m = M̄ ′. For each vertex x ∈ G let N̄x be a small neighbourhood in N of the set fmϕ̄−1x ∪Nx. Since
G ∼= S1, it follows that ϕ̄−1x is a disjoint union of arcs and hence N̄x is a disjoint union of discs. For each edge xy ⊂ G
the set fmϕ̄−1xy− N̄x is also a disjoint union of discs, because for each edge a such that ϕ̄a = xy the strip fm(a) joins

N̄y and some disc of N̄x. Hence fmϕ̄−1xy − N̄x does not decompose N , and since N̄x is a disjoint union of discs, it
follows that N̄y ∪ (fm− N̄x) does not decompose N(xy). So if N̄x is not connected, one can join any of its connected
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components C ⊂ N(xy) with another connected component of N̄x by a strip in N(xy) not intersecting fm and N̄y.

Clearly, N̄x remains to be a disjoint union of discs after this operation. Let us add to each N̄x such strips until all N̄x
become connected. Then the obtained discs N̄x and the strips N̄(xy) = Cl(N(xy) − N̄x− N̄y) form the required handle

decomposition S̄. �

Lemma 4.6. If there is a mod 2-embedding M → N S-close to ϕ, then there is a mod 2-embedding, S-close to
C) ϕc; D) ϕ̄′.

Proof of 4.6.C. Take an S-close to ϕ mod 2-embedding M → N . Denote by f : K → N the restriction of the
embedding. Make the move from Contracting Edge Proposition 2.5.K (Fig. 3(b)) for each edge of the tree T ⊂ K (see
Definition of M c). Let f : Kc

ϕ → N be the restriction of the constructed map. By the construction the local ordering
of the edges of Kϕ in M c and the local ordering of their f -images coincide. So the map f : Kc

ϕ → N extends to the
required mod 2-embedding M c → N . �

We prove Lemma 4.6.D only in case when K does not contain pairs of arcs i, j with ϕi ∩ ϕj transversal (this
assumption for G ∼= S1 is satisfied automatically.) The lemma is proved analogously for an arbitrary graph K, if we
use the definition of N ′ from [6].

Proof of 4.6.D. Take an S-close to ϕ mod 2-embedding M → N . Denote by f : K → N the restriction of the
embedding. Let f̄ ′ : K̄ ′

ϕ → N ′ be the map from Definition of f̄ ′ in §2. By the construction of Definition of f̄ ′ and

Definition of M̄ ′ the local ordering of the edges of K̄ ′
ϕ in M̄ ′ and the local ordering of their f̄ ′-images coincide. So the

map f̄ ′ extends to the required mod 2-embedding M̄ ′ → N ′. �

Proof of 1.5. The necessity follows from the necessity of the condition v(ϕ) = 0 for approximability by embeddings
[8], Example 1.1 [12] and Lemma 2.2.A [6]. Let us prove the sufficiency. Suppose that v(ϕ) = 0. By Lemma 4.3 there
exist a thickening M of K and a mod 2-embedding f : M → N , S-close to ϕ. Local Approximation Lemma 4.4
implies that ϕ is locally approximable by embeddings. Note that the graphs K ′

ϕ and ((K̄c)′)c are the same modulo
multiplicity of some edges, ϕ′ and ((ϕ̄c)′)c coincide modulo this difference. Change ϕ′ to this quasi-derivative ((ϕ̄c)′)c.
By Lemma 4.6.C,D it follows that for each natural i the derivative thickening M (i) is well-defined and there exists an
S-close to the map ϕ(i) mod 2-embedding, and the map ϕ(i) is locally approximable by embeddings. By Lemma 4.2.T
the derivative ϕ(k) is either ”empty” or the standard d-winding for some d 6= 0, hence the quasi-derivative ϕ(k+1) is
either ”empty” or the standard d-winding with the same d. By the assumption of the theorem d is either even or
±1. Since for the standard winding of an even degree d 6= 0 the van Kampen obstruction is nonzero and ϕ(k+1) is
approximable by mod 2-embeddings, it follows that d is not even. Hence either d = ±1 or ϕ(k+1) has an empty
domain. In both cases there exists an S-close to the map ϕ(k+1) embedding K(k+1) → N (k+1), where the quasi-
derivatives K(i) are defined analogously to ϕ(i). Since K(k+1) = ∅ or K(k+1) ∼= S1, it follows that this embedding
extends to an embedding M (k+1) → N (k+1). Applying Lemma 4.5.C,D k + 1 times, we get an embedding M → N ,
which is S-close to ϕ. The restriction K → N of the embedding is S-close to ϕ, and hence ϕ is approximable by
embeddings. �

For the proof of Lemma 4.2.I we need the following definition.

Definition (Definition of ϕs). For a nondegenerate simplicial map ϕ : K → G denote by ∆̃(ϕ) = { (x, y) ∈ K̃ |ϕx =

ϕy } the singular graph, where K̃ is the deleted product of the graph K. The vertices of ∆̃(ϕ) are the pairs (x, y)
of vertices of K such that ϕx = ϕy. For an arbitrary simplicial map ϕ : K → G define the simplicial singular map
ϕs : ∆̃(ϕc) → G by ϕs(x, y) = ϕcx for each vertex (x, y) ∈ ∆̃(ϕc).

Proof of 4.2.I. First note that if ϕ does not identify triods then ϕs does not contain a simple triod. Secondly note that
(ϕ′)s = (ϕs)′ for any simplicial map ϕ (formally, it follows from [5, Proposition 2.11] for the pair of maps ϕ, ψ, where

ψ is the projection ψ : K̃ → K). Thirdly note that |∆̃(ϕc)| ≤ k and ϕs is a standard winding for a standard winding
ϕ. Therefore, by Lemma 4.2.T, (ϕ(k))s is a standard winding, and hence ϕ(k)Σ(ϕ(k)) is a disjoint union of circles.
Now note that ϕ(k)

∣

∣

Σ(ϕ(k)) is ultra-nondegenerate (because (ϕ(k))s is not ultra-nondegenerate in the opposite case)

and Σ(ϕ(k)) has no hanging vertices (because ∆̃(ϕ) has a hanging vertex in the opposite case). So ϕ(k)
∣

∣

Σ(ϕ(k)) is an

ultra-nondegenerate map of a disjoint union of circles into a disjoint union of circles ϕΣ(ϕ), consequently ϕ(k)
∣

∣

Σ(ϕ(k))

is a standard winding. �
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[11] J. Segal and S. Spież, On transversely trivial maps, Questions and Answers in General Topology 8 (1990), p. 91–100.
[12] K. Sieklucki, Realization of mappings, Fund. Math. 65 (1969), p. 325–343.
[13] A. Skopenkov, A geometric proof of the Neuwirth theorem on thickenings of 2-polyhedra, Mat. Zametki 56:2 (1994), p. 94–98 (in

Russian). English transl.: Math. Notes 58:5 (1995), p. 1244–1247.
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