
CIS-GRAPHS

Recall some basic definitions. Let G be a graph.
Consider some subset V = {v1, . . . , vn} of vertices of G. A subgraph of G on the set V is a graph G′

having V as the set of vertices, and two vertices of G′ are connected if and only if they are connected in G.
A complement of G is a graph with the same vertices as G has and with those and only those edges which

do not appear in G.
Consider some subset of vertices. If every two vertices from this subset are connected, then such subset

is called a clique; if there are no edges between these vertices, then this subset is called stable. A clique (a
stable set) is maximal if it is not contained in a larger clique (stable set).

The main definition in this series of problems is a definition of a CIS-graph.
We call G a CIS-graph if C ∩ S 6= ∅ for every maximal clique C and every stable set S. E.g., a cycle of

length 4 is a CIS-graph, while a Π-graph (see Fig. 9) is not a CIS-graph.

Fig. 1

Is the set of CIS-graphs numerous? Problems needing only the definition.

1. Show that a disjoint union of two CIS-graphs G1 and G2 is again a CIS-graph.
Remark. A disjoint union of graphs G1 and G2 is a union with no coinciding vertices and no edges between
G1 and G2.

2. Find all CIS-graphs which do not contain a clique on 3 vertices. Prove that one can colour the vertices
of such graph in two colours so that each two connected vertices share different colours.

3. Suppose that one deletes from a CIS-graph a vertex incident to exactly one edge. Prove that the resulting
graph in also a CIS-graph.

4. а) Call a vertex good if any two its neighbours are connected (i.e., this vertex, together with all its
neighbors, forms a clique). Prove that if each maximal clique contains a good vertex, then the graph is a
CIS-graph.

b) Show that the converse does not hold.

5. Consider a graph whose set of vertices is a union of clique and a stable set, and these clique and stable
set have a common vertex. Show that this graph is a CIS-graph.

We mean by a substitution of a graph G1 into a graph G2 the following operation: a fixed vertex A of
graph G2 is replaced by a graph G1, and vertices B ∈ G1, C ∈ G2 \ {A} are connected if and only if A was
connected with C.

A

G1

G2

Fig. 2

6. Suppose that the result of substitution of G1 into G2 is a CIS-graph. Show that both G1 and G2 are
CIS-graphs.

7. Show that each graph is contained as a subgraph in a CIS-graph.

8. Consider two sequences of graphs G1, G2, G3, . . . and H1,H2,H3, . . . such that either both sequences are
infinite, or both consist of equal number of elements. Consider the set of graphs G for which the following
condition holds: For each subgraph G′ ⊂ G isomorphic to Gi, there exists a subgraph H ′ ⊃ G′ isomorphic to
Hi.

a) Construct sequences (Gi) and (Hi) in such a way that the resulting set of graphs is exactly the set of
all CIS-graphs.

b) For the same purpose, can these sequences of graphs be finite?
Hereinafter, we will say simply “a graph G contains H” instead of “a graph G contains a subgraph isomorphic

to H”.
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9∗. Suppose that a graph G contains exactly one pair of non-intersecting maximal clique C and maximal
stable set S.

a) Prove that G cannot contain exactly one vertex not belonging to C ∪ S.
b) The same for two vertices.
c) Try to prove that the set of vertices of G coincides with C ∪ S.

Combs and settled combs.

A family of graphs is called closed under substitution if for any two graphs G1 and G2 from this family, the
result of arbitrary substituting of G1 into G2 also belongs to this family. A family of graphs is called exactly

closed under substitution if a graph from this family can be obtained by substitution only from graphs of this
family.

A family of graphs is called closed under complementation if for any graph from this family, its complement
also belongs to this family.

A family of graphs is called hereditary if for any graph from this family, all its subgraphs also belong to
this family.

It is obvious that the family of CIS-graphs is closed under complementation. The result of problem 6 says
that it is closed under substitution. Let us find some other properties of CIS-graphs.

10. a) Suppose that a graph contains a pair of non-intersecting maximal clique and maximal stable set. Prove
that this graph contains a Π-graph as a subgraph.

b) Prove that converse does not hold.

Definition. We mean by a k-comb (k > 2) the following graph on 2k vertices. The first k vertices form a
clique, the last k vertices form a stable set, and for each i = 1, 2, . . . , k the ith vertex from the second set is
connected only with the ith vertex from the first set. We mean by a settled k-comb the graph obtained from
the k-comb by adding a vertex; the new vertex is connected with all the vertices of the clique, and only with
them. By a k-anticomb and a settled k-anticomb, respectively, we mean complements to the k-comb and the
settled k-comb.

3-comb settled 3-comb 3-anticomb settled 3-anticomb

11. a) In a CIS-graph, any Π-subgraph is contained in an A-subgraph (see Fig. 3).
b) In a CIS-graph, any subgraph isomorphic to a k-comb is contained in a subgraph isomorphic to a

settled k-comb.

Fig. 3 . A-graph
12. Construct a graph in which for all k, each k-comb is contained in a settled k-comb, each k-anticomb is
contained in a settled k-anticomb, and there exists a pair of non-intersecting maximal clique and maximal
stable set.

Guiding light. Try to prove the following important theorem.
Theorem. Suppose that a graph does not contain 3-comb and 3-anticomb as subgraphs; moreover, suppose

that each 2-comb is contained in a settled 2-comb. Then this graph is a CIS-graph.

Definition. A complete graph with all its edges coloured in d colours will be referred to as a d-graph. In
a d-graph G, denote by Ei the set of all edges sharing ith colour. A graph having the same set of vertices,
while its set of edges is Ei, will be referred to as a chromatic (or colour) component of ith colour.

Definition of a CIS-d-graph. Consider a d-graph. For each colour, choose an arbitrary maximal stable
set in ith chromatic component. If for every such choice all these stable sets will share a common vertex,
then G is called a CIS-d-graph.

Consider a game with complete information for d men. One can represent it as a finite tree with vertices
being the positions in this game. There is a root vertex (an initial position of the game); all edges outcoming
from this vertex are coloured in the 1st colour — this is the colour of the player making the first move; doing
this, the player chooses the next position in the game. For each obtained vertex, there are some edges of
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the next player’s colour (for different new vertices, these colour may differ; thus, the first player by his move
chooses the player making the next move). After that the game proceeds in the same way. Since the tree is
finite, the game will necessarily end after some moves. The terminal vertex (the result of the game) has no
outcoming edges. One can put into correspondence to this tree a d-graph in the following way: The vertices
are the terminal vertices of the tree. Consider two vertices and the (unique) path connecting them in a tree;
consider the vertex of this path which is closest to the root; suppose that its outcoming edges share ith
colour. Then connect our two vertices with an edge of ith colour.

One can show that the resulting d-graph is a CIS-d-graph (you can try to think this over).
Consider a CIS-d-graph. Each its chromatic component is itself a CIS-graph (problem), but it is not

known whether the converse holds. While adding the assumption that a CIS-d-graph does not contain a 3-
coloured triangle, this converse statement appears to be true (problem). A description of such CIS-d-graphs
can be reduced to a description of CIS-graphs (though there is no admissible description to either).

Up to this moment, it is unknown whether there exists a CIS-d-graph with a distinct-colored triangle; it
can be checked (involving computer) that there is no such graph with ≤ 12 vertices.

The properties of Gallai graphs.

By a ∆-graph we mean a graph on 3 vertices, with edges sharing 3 distinct colours (a 3-coloured triangle).

Fig. 4 . ∆-graph

Definition. A d-graph not containing ∆-graph as a subgraph is called a Gallai d-graph.

Let us redefine a Π-graph as a graph on 4 vertices, in which edges of one colour form a Π, while all other
edges share the second colour.

Fig. 5 . Coloured Π-graph

The aim of this section is formulated in the last problem; this problem involves a magnificent property of
d-graphs — a Gallai decomposition, which is described in problem 16.

13. Suppose a d-graph G satisfies the following property: if one deletes all the edges of one arbitrary colour,
then the graph remains connected. Assume in addition that G is neither a Π-graph nor a ∆-graph. Prove
that one can delete a vertex from this graph so that the resulting graph also satisfies this property.

14. Suppose that each chromatic component of a d-graph (d ≥ 3) is connected. Prove that this graph contains
a ∆-graph.

15. Check whether a class of Gallai d-graphs is closed under substitution, exactly closed under substitution,
and whether it is hereditary.

16. Prove that every Gallai d-graph can be obtained as a result of a substitution of n d-graphs into some
2-graph (instead of n its vertices).

17. Let F be a class of graphs, which is exactly closed under substitution, and closed under complementation.
Consider a Gallai d-graph such that all its chromatic components except at most one (suppose of dth colour)
belong to the class F . Suppose that the given graph has at least one edge of dth colour. Then the dth
chromatic component also belongs to F .

After semi-final.

Gallai CIS-d-graphs.

18. Check whether the class of CIS-d-graphs is closed under substitution, exactly closed under substitution
and hereditary.

19. If a given d-graph does not contain ∆-graphs and Π-graphs as subgraphs, then it is a CIS-d-graph.

20. Show that a d-graph corresponding to a game with complete information (see the first section) does not
contain a ∆-graph and a Π-graph as subgraphs, and, conversely, every such graph corresponds to a game.

21. Give an example of Gallai d-graph, but not a CIS-d-graph, such that it has edges of at least 3 different
colours.

22. Give an example of CIS-d-graph, which has edges of at least 3 different colours.

23. A Gallai d-graph is a CIS-d-graph if and only if all its chromatic components are CIS-graphs.
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24. If all but one chromatic components of a Gallai d-graph are CIS-graphs then this d-graph is a CIS-d-
graph.

25. Assume that all CIS-3-graphs are Gallai 3-graphs. Prove that all CIS-d-graphs are Gallai d-graphs.

26. Hypothesis. Each CIS-d-graph is a Gallai d-graph.

Per aspera ad astrum.

Definition. Let G10 be a graph drawn in the picture below:

v1

v9

v0

v3

v4

v5

v6

v7

v8

v2

G10

Let 2G10 be a graph with twenty vertices v0, v1, . . . , v9, v
′

0
, v′

1
, . . . , v′

9
, which is obtained from two copies of

G10 (the first graph G10 on vertices v0, v1, . . . , v9, the second on the remaining vertices). For i 6= j we draw
an edge from vi to v′j if and only if vi and vj are not connected with an edge. Edges between vi and v′i may
exist or may not exist (independently for each i). So, 2G10 means an arbitrary one of these 1024 graphs.

The graph in the figure below is the Petersen graph. We denote it by P . Take two its copies on the sets of
vertices u1, u2, . . . , u10 and v1, v2, . . . , v10, respectively. For i 6= j, we link ui and vj with an edge if ui and uj

are not linked with an edge. For any pair of vertices ui and vi, we may either link them or not. If we choose
one of these 210 = 1024 graphs, then the obtained graph is named “2P ”.

v0
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v2
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v6
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v9

The Petersen graph

Theorem. Suppose that a graph does not contain 3-comb and 3-anticomb as subgraphs; moreover, suppose
that each 2-comb is contained in a settled 2-comb. Then this graph is a CIS-graph.

The remaining problems are devoted to the proof of this theorem.
27. Looking for G10. Suppose that G has at least one pair of non-intersecting maximal clique C and maximal
stable set S, G does not contain 3-comb and 3-anticomb as subgraphs, and each 2-comb is contained in a
settled 2-comb.

a) Show that there exist vertices in G belonging neither to C nor to S.
b) Show that G contains G10 as a subgraph.

28. Find the second!
Suppose that in G all 2-combs are contained in settled 2-combs, G contains G10 on vertices v0, v1, . . . , v9

and does not contain 3-combs and 3-anticombs as subgraphs.
a) Show that G contains ten vertices v′

0
, v′

1
, . . . , v′

9
such that for every distinct i and j vertices vi and v′j

are linked if and only if vertices vi and vj are not linked.
b) Find a subgraph 2G10 in G.
Where are the combs? Notice that a graph 2G10 does not contain a 3-comb and a 3-anticomb, but it

contains 2-combs, not included in settled 2-combs, if we suppose, for example, that v2 and v′
2

are linked with
an edge.

In a problem below, all 2-combs in G are contained in settled 2-combs, it contains 2G10 and does not
contain a 3-comb and a 3-anticomb.
29. a) Show that the vertices v2 и v′

2
of the subgraph 2G10 are not linked.

b) Show that the vertices of 2G10 might be renumbered in such a way that we obtain 2P .
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c) Prove the Theorem.

CIS-graphs. Solutions of the problems

We sometimes use a term "anticlique"instead of the words "stable set"in these solutions. A set of all
vertices in a graph G is denoted by V (G).

Solution of Problem 1. Let G = G1 ⊔G2 be a disjoint union of G1 and G2, and let C and S be a maximal
clique and a maximal stable set (respectively). It is obvious that S intersects with each of the two graphs G1

and G2 and C is contained in one of them. Without loss of generality, let us assume that C is contained in
G1. Then S ∩ G1 and C ∩ G2 intersect as every pair of a maximal stable set and a maximal clique in G1.

Solution of Problem 2. If there are no triangles in a CIS-graph, then there are also no Π-subgraphs.
Otherwise the two vertices "in the middle"of this subgraph (i.e. whose degrees are 2) form a maximal clique
(let us designate it by C). And the two vertices in this subgraph whose degrees are 1 form a stable set which
does not intersect with C and is contained in a certain maximal stable set that also does not intersect with
C.

Consider every connected component in our graph. If there exist two vertices the distance between which
is more than two, then there are two vertices the distance between which equals three. The shortest path
connecting them consists of 4 vertices, and a subgraph on these vertices is the Π-subgraph, and this is
impossible. So every two vertices in every component of connectedness are connected by a path of length not
more than two.

Suppose there exist a cycle of odd length (we call such cycles "odd cycles"), then let us consider the
minimal among them. It contains at least 5 vertices, and the pairs of non-adjacent vertices are not connected
by edges (otherwise the cycle is divided into two smaller ones, one of them is odd). Thus every four consequent
vertices of this cycle form a Π-graph, and this is impossible. So there are no odd cycles. It is not difficult to
prove that such graph is bipartite: its vertices may be divided into two parts so that the ends of every edge
lie in different parts.

Therefore, every connected component is a bipartite graph. It must be complete (every two vertices from
different parts are connected): the length of the minimal path between the two vertices from different parts
that are not connected by an edge is not less than 3. So our initial graph is a disjoint union of several complete
bipartite graphs. It is very easy to draw the vertices of such graph in two colors to satisfy required condition:
in every connected component we draw one part in the first color and the other part in the second color.

To finish the solution it is only necessary to check that every such graph satisfies the conditions of the
task. Note that since a complete graph is a CIS-graph then a complete bipartite graph (as a complement to
a disjoint union of two complete graphs) is also a CIS-graph. So every disjoint union of complete bipartite
graphs is a CIS-graph.

We shall note the following trivial fact: a graph is a CIS-graph if and only if any clique and anticlique can
be extended to intersecting maximal clique and anticlique.

Solution of Problem 3. Let us denote a graph which is obtained from a graph G by removing the vertex v

from G (and all the edges containing v) by G−v. Suppose that G is a CIS-graph, G−v is not and the vertex v

is connected to a unique vertex u in the graph G. Then there exist a maximal clique C and a maximal stable
set S in G − v that do not intersect. Let us extend them to a maximal clique C ′ and a maximal anticlique
S′ in the graph G respectively.

It is clear that C ′ and S′ intersect only by vertex v. But then C cannot contain any vertices except u

(because there is only one edge containing v - the one between v and u). Also if a maximal clique consists of
a unique vertex then this vertex is isolated (i.e. is not connected to other vertices) and therefore is contained
in every maximal anticlique. So C and S intersect by the vertex u. Contradiction.

Solution of Problem 4. a) Suppose that it is not true, then in a graph G there are a maximal clique C

and a maximal stable set S which do not intersect, and in C there is a good vertex v. If there is a vertex
u ∈ V (S) connected to v then all the vertices in C are adjacent to v (since v is good), which contradicts the
maximality of C. So v is not connected to any of the vertices in S which contradicts the maximality of S.

b) The cycle of length 4 serves as an example.

Solution of Problem 5. Let the maximal clique be C and the maximal stable set be S; they intersect at a
vertex u. Then suppose that a certain maximal clique C ′ and a certain maximal stable set S′ do not intersect.
If C ′ = C and S′ does not intersect with C ′ then S′ ⊂ S and therefore S′ = S. Thus C ′ 6= C and (due to
analogous reasons) S′ 6= S. Assume that s ∈ C ′ \ C, c ∈ S′ \ S; we may suppose (without loss of generality)
that the edge between c and s does not exist. But since S′ is maximal, there must exist a vertex c′ adjacent
to s in S′. Note that c′ cannot lie in S (there already lies c′ and S is an anticlique). Therefore c′ lies in C. So
the clique C and the anticlique S′ have vertices s and c′ in their intersection, which is impossible (if it were
true, the edge (s′, c) would exist and not exist simultaneously).

Solution of Problem 6. Denote the obtained graph by the letter G.
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Suppose that G1 is not a CIS-graph, then there exist a maximal clique C and a maximal stable set S in G1

that do not intersect. Then consider any maximal clique containing C and any maximal anticlique containing
S. Their common vertex is connected to the vertices from C and not connected to any of the vertex from S,
which contradicts the definition of substitution.

To prove that G2 must be a CIS-graph it is sufficient to note that during an operation which is inverse
to the operation of substitution cliques and anticliques transform into cliques and anticliques, and, what is
more, all cliques and anticliques in G2 can be obtained in such way.

Solution of Problem 7. Consider an arbitrary graph G and for every its maximal clique add a vertex to
the graph and connect it to all of the vertices in this clique and only to them (this procedure has to be
done once). In the constructed graph (according to the construction) every maximal clique contains only one
added vertex, and obviously it is good. Thus (according to the task 4) the constructed graph is a CIS-graph,
and the initial graph is its subgraph.

Solution of Problem 8. a) Consider a clique C and an anticlique S of a graph G. Suppose that V (G) = C⊔S

and every vertex from C is adjacent to at least one vertex from S, and every vertex from S is not adjacent
to at least one vertex from C (i.e. C and S are maximal in G). Every graph G can be extended to a graph
H(G) by adding a vertex adjacent to all of the vertices from a clique C and only to them. By enumerating
all possible arrays (G,C, S,H(G)), we get four sequences {Gi}, {Ci}, {Si}, {Hi}.

Note that a graph is not a CIS-graph if and only if (according to the note after the solution of problem
2) there are such clique and anticlique in this graph that it cannot be extended in respect to this clique
and anticlique in the way described in the previous passage. In other words, a graph is not a CIS-graph if
and only if for a certain i it contains a subgraph isomorphic to Gi which cannot be extended to a subgraph
isomorphic to Hi. Therefore, the sequences Gi, Hi satisfy the conditions of the problem.

b) Assume that there exist such two finite sequences {Gi}, {Hi} that satisfy the conditions of our problem.
Suppose that the maximal number of vertices in every graph Gi, Hi is equal to n. Consider the n-comb and
the settled n-comb. It is not difficult to check that if in the settled n-comb every subgraph isomorphic to Gi

can be extended to a subgraph isomorphic to Hi then the same holds true for the n-comb. But the settled
n-comb is a CIS-graph while the n-comb is not a CIS-graph. We have obtained the contradiction.
Solution of Problem 9. a) Let C ⊔ S ∪ v be the set of vertices of G where C is maximal clique and S is
maximal anticlique. Denote by C ′ a subset of vertices of C which are adjacent to v and denote by S′ a subset
of vertices of S which are not adjacent to v. Then clique C ′ ∪ v must be extended to maximal clique which
intersects with S. Then there is a vertex s ∈ S′ which is adjacent to all vertices from C ′ and to vertex v.
Similarly there is a vertex c ∈ C ′, which is not adjacent to all vertices from S′ and to vertex v. Without loss
of generality vertices s and c are linked. So there is a vertex c′ ∈ C, which is not adjacent to s (so it follows
that c′ is not adjacent to v). Consider clique C ′′ on vertex s and on all its neighbors in C and any maximal
anticlique S′′ that contains vertices v and c′. Vertex v can not be added to clique C ′′ because c ∈ C ′′. So this
clique is maximal. Any vertex of C ′′ is adjacent to v or to c′. Then S′′ does not intersect C ′′.

b),c) Consult the article cis1.pdf.
Solution of Problem 10. a) (The solution was proposed by the following team: Vasiliy Mokin, Viktor

Omelyanenko and Viktor Sadkov.) We denote this pair of sets by C and S and consider a complete oriented
bipartite graph with a set of vertices C ∪ S and edges drawn according to the rule: if the vertices c ∈ C and
s ∈ S are adjacent then the edge in the new graph is directed from c to s, otherwise it is directed from s to c.
Since S is a maximal anticlique then every vertex in the initial graph is adjacent to at least one vertex from
S. In particular, this means that in the new graph for every vertex in C there exists an edge that is directed
from this vertex. Analogously, for every vertex in S there exists an edge that is directed from this vertex.

Thus in our oriented graph for every vertex the number of edges directed from it is not less than 1,
therefore, there is a cycle in our graph (by a cycle in an oriented graph we mean the oriented cycle). Then
consider a cycle of minimal length A1A2 . . . A2n (the length is even since the graph is bipartite). If 2n > 4
then depending on orientation of the edge A1A4 it is possible to find a cycle smaller than minimal in our
graph: either A1A2A3A4 or A1A4A5 . . . A2n. So 2n = 4. Then it is not difficult to check that the Π-graph
was induced on the vertices A1, A2, A3, A4 in the initial graph.

b) For instance, the A-graph, in other words, the settled 2-comb.

Solution of Problem 11. a) It is a partial case of the next subproblem.
b) Consider an arbitrary maximal clique containing the first group of vertices in the comb (they form

a clique) and any maximal anticlique containing the second group of vertices in the comb (they form an
anticlique). Their intersection contains at least one vertex, which forms a settled comb by being added to
the comb.
Solution of Problem 12.
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v1 v2 v3 v4 v5

v12 v13 v14 v15 v23 v24 v25 v34 v35 v45

Fig. 6

The main property of Gallai graphs.

Solution of Problem 13. Denote the given d-graph by G, and let v be one of its vertices. Notice that
there exists at most one colour such that if we exclude v from G then the subgraph of not this colour is not
connected: If G becomes non-connected when we omit the edges of the 1st colour, then all the edges between
its connected components are of the 1st colour. But the full bipartite graph is connected, hence if we omit
some other colour then the remaining graph will be connected. Suppose that for any vertex v there exists a
colour such that G − v is not connected without this colour. We showed that for each vertex there exists at
most one such colour (if for a vertex there are no such colours, then we are done). Colour this vertex in this
colour.

Notice that in any connected graph there exist at least two vertices such that deleting of them does not
break connectedness. To show this, take the spanning tree of this graph. Its terminal vertices can be deleted.
In our case, the initial graph without any fixed colour is connected, this means that for this colour there exist
at least two vertices such that deleting of them does not break the connectedness of the graph, i.e. coloured
not in this colour.

Suppose uis a vertex of the 1st colour. Let v1, v2, . . . , vn and w1, w2, . . . , wm be a splitting of all the other
vertices of the graph such that these components are not connected without the 1st colour (in G−u). All the
edges between these two groups are of the 1st colour. We will name these groups by parts; a part containing
at least two vertices will be named big. If both parts are small, then either the given d-graph is a 3-coloured
triangle or it does not satisfy the conditions of the problem. Suppose that there exists at least one big part.
We have at least two vertices not of the 1st colour, while a small part can contain at most one of these vertices.
This means that at least one big part contains a vertex not of the 1st colour. Without loss of generality,
suppose it is the second part, i.e. m > 2, and w1is of the 2nd colour. Perform the same procedure for the
2nd colour. The vertices of G split into two parts, such that all the edges between these parts are of the 2nd
colour. But the edges (w2, v1), (w2, v2), . . . , (w2, vn), (v1, w3), (v1, w4), . . . , (v1, wm) are of the 1st colour, this
means that w2, v1, v2, . . . , vn, w3, . . . , wm are in one part with respect to w1. Hence, u is in the other part,
and all the edges from u to all the other vertices, excluding w1, are of the 2nd colour.

Consider the 2nd vertex w′

1
of colour k 6= 1. Perform the same procedure as with w1: Split all the other

vertices into two parts and look in which part with respect to u it belongs. If it belongs to a big part, then,
similarly, u is connected with all vertices but w′

1
with the edges of colour k. Notice that this graph contains

some other vertices besides u, w1, and w′

1
(since G contains at least 4 vertices). They are connected with u

with the edges of colours 2 and k simultaneously, hence, k = 2. It follows that all the edges incident to u

are of the 2nd colour. Hence, the initial d-graph is not connected if we exclude the edges of the 2nd colour.
Contradiction. We obtain that w′

1
= v1, n = 1, and the vertices w2, w3, . . . , wm are all of the 1st colour.

u

v1

w1
w2

w3
· · ·

Fig. 7

Delete w2. The vertices of the graph split into two parts in such a way that all the edges between them are
of the 1st colour. Since all the edges (u, v1), (u,w2), (u,w3), . . . , (u,wm) are of the 2nd colour, all the vertices
u, v1, w3, . . . , wm are in one part. Hence, w1 is in the other part. We obtain that w1 is connected with the
vertices u, v1, w3, w4, . . . , wm with the edges of the 1st colour. If m > 2, we obtain in the same way that
the edge (w1, w2) is of the 1st colour, which means that all the edges incident to w1 are of the 1st colour.
Contradiction. Then m = 2. If the edge (w1, w2) is of the 2nd colour, then the given d-graph is a Π-graph.
If the edge (w1, w2) is of the 1st colour, then the initial d-graph without the edges of the 1st colour is not
connected. This is also a contradiction.
Solution of Problem 14. Induction on the number of vertices in the graph. The base for n = 3 is obvious:
at least one chromatic component is not connected. Perform the step. Suppose that n > 3 and all chromatic
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components are connected. Exclude one vertex (let a); if all the chromatic components remain connected,
then we use the statement of induction and find the 3-coloured triangle. Otherwise one of the chromatic
components (suppose the 1st) became disconnect. Let C1, . . . , Ck be the connected components of the 1st
colour in the obtained graph; notice that for each of these components there exists an edge from a to this
component of the 1st colour.

Consider two components Ci and Cj and an edge connecting two their vertices ci and cj ; without loss of
generality, let it be of 2nd colour. Take another vertex c′i from Ci. If it is connected with cj with an edge of
the 3rd colour, then we get a 3-coloured triangle. It means that the edge c′i − cj is also of 2nd colour, and so
on. One gets that for any two components Ci and Cj all the edges between them are of the same colour.

Now return to the initial graph. All its chromatic components are connected, this means that a has an
edge of colour 2. Let this edge join a with a vertex cr ∈ Cr. If there exists a component Cs such that the
edges between Cs and Cr are of another colour (denote this colour 3), then find a vertex cs ∈ Cs such that
the edge a − cs is of colour 1 (this is possible because the 1st connected component of the initial graph is
connected); then a, cr, cs form a 3-coloured triangle.

We showed that all the edges joining Cr with all the other components are of colour 2. Similarly, if we take
an edge of colour 3 incident to a and consider the component Ct incident to the second end of this edge, then
we obtain that all the edges connecting Ct with other components are of colour 3. But this is impossible:
if r = t, notice that we have more than one component, and it is not clear edges of which colour link this
component with Cr. If, otherwise, r 6= t, then it is not clear edges of which colour join Cr and Ct.
Solution of Problem 15. As in the solution of problem 6, we show that this family is closed under
substitution. To show the exact closeness, notice that for any vertex from the d-graph we can find d sets each
of which will be independent of the edges of its colour and will be maximal with this property. When d = 2,
as we noticed above, this family is not hereditary.
Solution of Problem 16. An obvious Lemma.Suppose that a Gallai d-graph has an edge of dth colour
and its dth chromatic component is not connected. Then all the edges between any two fixed connected
components of this chromatic component are of the same colour.
Its proof is a part of proof of 14.
The solution of the problem. We prove, using descent on k (k < d) the following statement:

Suppose we have a Gallai d-graph. Then it is the result of substitution of d-graphs G1, G2, . . . , Gn instead
of n vertices of a k-graph G, and G has at least two vertices.

This statement is obviously true for k = d. Suppose it is true for a given k, prove it for k−1. Take a Gallai
d-graph and construct for this graph and for k the decomposition described above. From the previous problem
it follows that the obtained k-graph G and all the substituted subgraphs G1, G2, . . . , Gn are Gallai d-graphs.
From problem 14 it follows that one of the chromatic components of the k-graph G is not connected. Let it
be the kth component and C1, C2, . . . , Cm be the connected components of this chromatic component. We
denote by Fi the subgraph of G with the set of vertices equal to Ci. Using the Lemma, we obtain that G

is the result of substitution of some graphs F1, F2, . . . , Fm instead of m vertices of a (k − 1)-graph H. If we
finally substitute the graphs G1, G2, . . . , Gn instead of some vertices of graphs F1, F2, . . . , Fm (if Ci consists
of vertices numbered i1, i2, . . . , ip, then we should substitute Gi1 , Gi2 , . . . , Gip in Fi according to the numbers
of vertices). Suppose that we obtained graphs H1,H2, . . . ,Hm. Then the initial Gallai d-graph is the result
of substitution of d-graphs H1,H2, . . . ,Hm instead of vertices of a (k − 1)-graph H. We prove the necessary
statement when k = 2.
Solution of Problem 17.

Лемма. Suppose that a given Gallai graph has edges of colour d and d > 3. Then a graph on n vertices

without edges belongs to F .

Доказательство. If F contains at least one non-connected graph, then the graph having two vertices and
no edges also belongs to F since this graph is the result of substitution of two graphs in a graph having two
vertices and no edges, where we take the first component as the first graph and all the other components as
the second graph. After this, we can obtain the graph with n vertices and no edges by substituting the graph
above into itself.

It remains to show that the family F contains at least one non-connected graph. We denote by G the
graph given in the formulation of the problem. Use induction on the number of vertices of G. As we proved
in problem 16, G can be obtained as the result of a substitution of some d-graphs G1, G2, . . . , Gn instead of
n vertices of a 2-graph H with at least 2 vertices. This generates substitutions on the chromatic components
of G. Either one of Gis or H has edges of dth colour. Since the family F is exactly closed, all the conditions
above remain true for the Gi (or H) found above. If we apply the step of induction, we obtain the required.
Now prove the base of the induction. If we take a graph with 2 vertices which has an edge of colour d, then
its 1st chromatic component is not connected. �

Now solve the problem using induction on the number of vertices of G.
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The base. A graph with one vertex always belongs to a family of graphs exactly closed under substitution.
The step. The first case is if G contains edges of at most two colours. By the conditions, all its chromatic

components but at most one belong to F . We have at least one edge of dth colour, this means that the dth
chromatic components is a complement to one of the previous chromatic components, hence, it also belongs
to F . Now consider the second case, when G has edges of at least 3 different colours. As we showed in the
previous problem, we can obtain G as the result of substitution of some d-graphs G1, G2, . . . , Gn instead of
n vertices of a 2-graph H which has at least 2 vertices. Notice that the chromatic component of G of the
ith colour is the result of substitution the chromatic components of the ith colour of d-graphs G1, . . . , Gn

instead of vertices of the ith chromatic component of the d-graph H (any 2-graph is a d-graph which has
edges of only two colours). By the condition, all but one chromatic components of G belong to the family F .
Since F is exactly closed under substitution, all the chromatic components, excluding, maybe, of colour d, of
d-graphs H,G1, G2, . . . , Gn belong to F . Each of these graphs has less vertices than G. Using the induction
statement and lemma 17, we obtain that the dth chromatic component of each of these graphs belongs to
F . Since F is closed under substitution, the dth coloured component of the d-graph G also belongs to the
family F .
Solution of Problem 18. Similarly to the solution of Problem 6.
Solution of Problem 19. Follows from Problems 10 and 23.
Solution of Problem 20. If x and y are terminal vertices, denote by P (x, y) the nearest vertex to the root
on the path connecting these vertices (it is also denoted their least common parent). It is easy to check that
for any two results of the game (which correspond to the terminal vertices of the tree) x, y, z the set of
vertices P (x, y), P (y, z), P (z, x) has at most two vertices. Hence, at least two of the edges (x, y), (y, z), (z, x)
are of the same colour. In the same way (it can be checked by considering several cases) it can be checked
that we cannot find four vertices and colour their parents in such a way that this subgraph on 4 vertices is a
Π-graph. The converse statement. We use induction on the number of vertices. The base is obvious. The
step: we showed in Problem 13 that there exists a colour (suppose the 1st), such that deleting of all the edges
of the 1st colour makes the graph non-connected (it is clear that all its components remain free from ∆ and
Π). Using the statement of the induction, we may construct a tree for each of the connected components.
Then we can take the disjoint union of these graphs and add one vertex connected with all the roots of these
trees with the edges of the 1st colour. It is clear that we obtained the required tree.
Solution of Problem 21.

Fig. 8
Solution of Problem 22.

Fig. 9
Solution of Problem 23. Suppose we have a CIS-d-graph. Due to lemma in solution of problem 25 we
have all chromatic components are CIS-graphs.

Let all chromatic components be CIS-graphs. Let us prove that our d-graph is a CIS-d-graph. Proof is
similar to proof of problem 17. We will make a sketch. The statement is obvious for 2-graphs. If we have edges
of at least three colours then we can use problem‘s 16 statement. So let our d-graph is a result of substition
of G1, G2, . . . , Gn to H, where the numbers of vertices of these graphs are less then the number of vertices
of our d-graph. Due to sixth problem all chromatic components of these new graphs are CIS-graphs. So we
use induction and obtain that they are CIS-d-graphs. Finally due to problem 18 we obtain that our d-graph
is a CIS-d-graph.
Solution of Problem 24. Follows from Problems 23, 17, 6.
Solution of Problem 25.

Лемма. If we merge two colours of a CIS-d-graph, then it remains a CIS-d-graph.

Доказательство. Consider a maximal set A of the vertices of this d-graph free from edges of colours 1 and
2. Let B and C be the maximal sets of vertices, such that B ⊇ A, C ⊇ A, and B and C are free from edges
of colours 1 and 2, respectively. Notice that B ∩ C = A, because in the other case A could be extended. Let
A3, A4, . . . , Ad be the maximal sets of vertices free from edges of colours 3, 4, . . . , d respectively. Since the
given graph is a CIS-d-graph, intersection of all the sets B,C,A3, A4, . . . , Ad is one vertex, this means that
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the intersection of the sets A,A3, A4, . . . , Ad is also one vertex. Hence, when we merge the 1st and the 2nd
colour, the graph remains a CIS-d-graph. �

Show that our graph does not contain 3-coloured triangles with the edges of colours 1, 2, and 3. Merge
all the edges of the 4th, 5th, . . ., and dth colour with the 3rd colour. According to the Lemma, we obtain
a CIS-3-graph. By the condition, the CIS-3-graph does not contain 3-coloured triangles. Hence the initial
graph also does not contain 3-coloured triangles.
Solution of Problem 27. The solution is rather hard, it’s better to consult the article 17_2006.pdf.
Solution of Problem 28. Consider a vertex v. Denote by u1, u2, u3, w1, w2, w3 : a+ b- c+, where a,b and
c are integers, the following statement: if vertex v is linked with vertices ua and uc and it is not linked with
vertex ub then vertices u1, u2, u3, w1, w2, w3 form 3-comb or 3-anticomb. More precisely, vertices u1, u2, u3

form a clique, vertices w1, w2, w3 form an anticlique, if vertices u1, u2, u3, w1, w2, w3 form 3-comb then vertices
vi and wj are linked if and only if i = j, if they form 3-anticomb then vertices vi and wj are linked if and
only if i 6= j. If u1 = vx then denote u1 by x. If other cases a+ means that vertices v and va are linked, and
a- — vice versa.

a) Note that G10 contains Π-subgraphs which are not contained in A-subgraphs. For every such Π-subgraph
we add a vertex which settles Π-graph to A-graph. All but one edges (or non-edges) between added vertex
and verteces of G10 we will draw because of our graph must not contain 3-comb neither 3-anticomb.

v′
7
) Π-subgraph 3 4 5 6 can not be settled to A-subgraph of G10, therefore there exists a vertex v with

edges 3- 4+ 5+ 6-.
4 5 v 3 6 8: 8+ Then vertices v and v8 are not linked, in other words 8-.
Let v and v1 be linked, in other words 1+.
5 1 v 0 4 6: 1+ 0+ Then 0-.
9 1 v 8 6 4: 1+ 9+ Then 9-.
2 3 4 8 0 v: 2- 0- Then 2+
1 2 9 8 0 v: 1+ 2+ 9- 0- Contradiction. Therefore 1-.
1 5 9 3 v 8: 9-
1 5 9 v 0 6: 9+ 0-
2 9 v 0 4 8: 2+ 9+ 0+
This means that 9+ 0+ 2-. In other words, vertices v and vi are linked if and only if vertices v7 and vi are

not linked for i 6= 7.
v′
6
)Π-subgraph 7 8 9 5 can not be settled to A-subgraph of G10, therefore there exists a vertex v with edges

7- 8+ 9+ 5-.
2 8 9 v 5 7: 2-. In other words 2+.
Let 1+.
1 2 v 8 0 5: 1+ 0+ Then 0-
8 9 v 7 0 4: 0- 4+ Then 4-
1 9 v 8 3 5: 1+ 3+ Then 3-
1 2 3 4 0 v: 1+ 3- 4- 0- Contradiction. Therefore 1-.
1 5 9 7 4 v: 4-
8 9 v 7 0 4: 4+ 0-
1 9 0 v 3 5: 0+ 3-
Consequently we obtain 4+ 0+ 3+. Hence vertices v and vi are linked if and only if vertices v6 and vi are

not linked for i 6= 6.
Edge (v′

6
, v′

7
) If not then 3 4 6′ 1 7′ 8

v′
1
If we renumber vertices of G10

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) → (0, 1, 2, 9, 8, 7, 6, 5, 4, 3),

we obtain vertices 5′ and 6′, which are linked. Π-subgraph 7 5′ 6′ 9 is not contained on A-subgraph of
G10 ∪ v′

6
∪ v′

7
, therefore we obtain a vertex v with 7- 5′+ 6′+ 9-.

5 6 8 7 9 v: 8-. Then 8+.
Let 2+.
2 8 v 5′ 4 9: 2+ 4+ Then 4-
3 5 6 v 7 4: 4- 3- Then 3+
2 3 v 0 7 4: 2+ 4- 3+ 0+ Then 0-
6′ 8 v 0 7 5: 0- 5+ Then 5-
2 5 9 0 6′ v: 2+ 5- 0- Contradiction. Therefore 2-.
2 3 6′ v 9 7: 3+ Then 3-
3 5 6 v 7 4: 3- 4- Then 4+
5′ 0 v 7 9 4: 4+ 0+ Then 0-
5′ 8 v 3 9 v: 3- 6+ Then 6-
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Vertex v is linked with vertex vi if and only if vertex v1 is not linked with vi.
Other vertices. We can renumber vertices of graph G10 in such way

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) → (4, 2, 1, 5, 6, 7, 8, 9, 0, 3) → (4, 2, 1, 3, 0, 9, 8, 7, 6, 5, 4).

So if we obtain vertex 6′, we automatically obtain vertices 0′, 8′, 4′. Also we already have obtained vertices
7′ and 1′, so we obtain all vertices 0′, 1′, . . . , 9′.

b) In following items the phrase "If not then"is missed.
Edge (v′

7
, v′

9
) 4 7′ 9′ 2 0 6

Edge (v′
6
, v′

0
)) 0′ 6′ 8 9 7 4

Edge (v′
6
, v′

8
)) 1 3 8′ 6′ 5 7

Edge (v′
6
, v′

9
)) 4 6′ 9′ 4 0 7

Edge (v′
5
, v′

9
)) 3 4 6′ 7′ 5′ 9′ because we already have edges (v′

6
, v′

7
), (v′

7
, v′

9
), (v′

6
, v′

8
)

So we find all edges between vertices 3′,4′,. . . ,9′,0′.
Edge (2′,4′) 1 0 4′ 5 2′ 8
Edge (2′,6′) 3 4 6′ 7 5 2′

Edge (2′,3′) 3′ 5 6 8 4 2′

Using obtained results and renumbering we obtain an edge (1′,2′): 6 7 0′ 2′ 3 1′

This is all.
Solution of Problem 29. a) Let v2 and v′

2
be linked. Consider Π-graph 4 2 2’ 0. It can not be settled by

a vertex of 2G10. Then there exists a vertex v such that 4- 2+ 2′+ 0-.
1) We will prove first that 1-. Assume contrary and we will prove that vertices v and vi are linked if and

only if vertices v7 and vi are linked.
So. 1+ 2+ 4- 0-.
1 2 3 4 0 v: 3-. Then 3+.
2 3 v 8 0 6: 6+ 8-
1 3 v 6 4 8: 6- 8+
Then either 6- 8- or 6+ 8+.
Let 6-. Then 8-.
1 2 5 4 6 v: 5- 6- Then 5+
1 2 9 8 0 v: 8- 9- Then 9+
5 9 v 6 8 3: 6- 8- 5+ 9+ Contradiction. Therefore 6+ Й 8+.
2 5 v 6 8 4: 5+ Then 5-.
1 9 v 8 3 5: 9+ Then 9-.
So vertices v and vi are linked if and only if vertices v7 and vi are linked. Consider a new G10 which is

obtained from the old G10 by replacing the vertex v7 to v.
Vertex 5’ is linked with vertices 3 and 0 and it is not linked with vertices 4 and 9. Therefore similarly to

finding v′
7

in item a) in last problem we obtain that vertex 5’ is not linked to vertex v (vertex v takes place
of vertex v7). Vertex 4’ is linked with vertices 9 and 0 and it is not linked with vertices 3 and 5. Therefore
similarly to finding v′

6
in item a) in last problem we obtain that vertex 4’ is not linked to vertex v (vertex

v takes place of vertex v7). Vertex 2’ is linked with vertices 4’ and 5’ (vertices 4’ and 5’ are opposite to
vertices 4 and 5 in new G10) and it is not linked with vertices 3 and 9. Therefore similarly to finding v′

1
in

item a) in last problem we obtain that vertex 2’ is not linked to vertex v (vertex v takes place of vertex v7).
Contradiction.

2) Therefore 1-.
Let 6+.
1 5 6 0 4 v: 6+ 5- Then 5+
2 9 v 4 0 6: 6+ 9+ Then 9-
2 5 v 6 8 4: 5+ 6+ 8+ Then 8-
2 5 9 3 6 v: 3+ 5+ 6+ 9- Then 3-
1 5 9 3 v 8: 3- 8- 9- 5+ Contradiction. Then 6-.
2 5 9 v 6 0: 5- 9-
1 5 9 v 0 6: 5+ 9+
Therefore either 5+ 9- or 5- 9+.
1 3 7 v 6 0: 3+ 7+
2 3 7 v 0 6: 3- 7-
Therefore either 3+ 7- or 3- 7+.
1 3 7 9 4 v: 3- 7+ 9-
1 5 9 7 4 v: 5- 7- 9+
Therefore either 3+ 5+ 7- 9- or 3- 5- 7+ 9+.
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3) Let 3- 5- 7+ 9+. So vertices v and vi are linked if and only if vertices v8 and vi are linked. Consider a
new G10 which is obtained from the old G10 by replacing the vertex v8 to v.

Vertex 5’ is linked with vertices 3 and 0 and it is not linked with vertices 4 and 9. Therefore similarly to
finding v′

7
in item a) in last problem we obtain that vertex 5’ is not linked to vertex v (vertex v takes place

of vertex v8). Vertex 4’ is linked with vertices 9 and 0 and it is not linked with vertices 3 and 5. Therefore
similarly to finding v′

6
in item a) in last problem we obtain that vertex 4’ is not linked to vertex v (vertex

v takes place of vertex v8). Vertex 2’ is linked with vertices 4’ and 5’ (vertices 4’ and 5’ are opposite to
vertices 4 and 5 in new G10) and it is not linked with vertices 3 and 9. Therefore similarly to finding v′

1
in

item a) in last problem we obtain that vertex 2’ is not linked to vertex v (vertex v takes place of vertex v8).
Contradiction.

4) Let 3+ 5+ 7- 9- 8-. So vertices v and vi are linked if and only if vertices v4 and vi are linked. Consider
a new G10 which is obtained from the old G10 by replacing the vertex v4 to v.

Vertex 9’ is linked with vertices 7 and 6 and it is not linked with vertices 8 and 5. Therefore similarly to
finding v′

7
in item a) in last problem we obtain that vertex 9’ is not linked to vertex v (vertex v takes place

of vertex v4). Vertex 8’ is linked with vertices 5 and 6 and it is not linked with vertices 7 and 9. Therefore
similarly to finding v′

6
in item a) in last problem we obtain that vertex 4’ is not linked to vertex v (vertex

v takes place of vertex v4). Vertex 2’ is linked with vertices 9’ and 8’ (vertices 9’ and 8’ are opposite to
vertices 9 and 8 in new G10) and it is not linked with vertices 7 and 5. Therefore similarly to finding v′

1
in

item a) in last problem we obtain that vertex 2’ is not linked to vertex v (vertex v takes place of vertex v4).
Contradiction.

5) Let 3+ 5+ 7- 9- 8+
1 5 9 7 v 6′: 6′-
v 6′ 8 5 0 7: 6′+
The end.
b) Switch pair of vertices 1 and 2 and pair of vertices 1’ and 2’ in 2G10. Then both G10 become P .
c) In item a) we proved that one of uncertain edge is non-edge. Due to big amount of good renumbering of

2P we obtain that all of uncertain edges are non-edges. It is easy to see that complement to 2P is 2P again.
Consider the complement to G. It is easy to see that it satisfies condition but all uncertain edges of 2P are
edges in the complement to G. Contradiction.


