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Definitions and notations

All the graphs under consideration are supposed to be without isolated vertices, multiple edges and loops.
The words “cycle” and “path” mean simple cycle and simple path in a graph.
For every edge of a graph we assign a positive number that we call a weight of this edge. A graph is called semimagic if it is possible

to choose weights of its edges and a positive number s such that for each vertex the sum of weights of its edges equals to s. A graph is
called magic if it possible to choose these weights to be pairwise different. Observe that a vertex of degree 1 in the semimagic graph is
necessarily the endpoint of the isolated edge. A magic graph can contain at most 1 isolated edge.

A subgraph F of a given graph G is called a skeleton, if it contains all the vertices of G and none of them is isolated vertex in F .
1-2-skeleton is a skeleton such that all its vertices have degree 1 or 2 and for each component the degrees of its vertices are the same.
In other words 1-2-skeleton consists of isolated edges and simple cycles only. For each 1-2-skeleton we can split all the edges of the
graph onto 3 groups: edges that belong to the cyclic part of F (we will denote it by Fc); edges that belong to the linear part of F , i. e.
isolated edges in F (we will denote it by Fℓ); and edges that do not belong to F . We say that 1-2-skeleton separates edges e1 and e2

if these two edges belong to different groups. In other words at least one of them belongs to F but at most one belongs to Fc and at
most one belongs to Fℓ.

We will use the following notations: Cn is the cycle with n edges (n > 3); Pn is the path with n edges; Kn is the complete graph
with n vertices; Km,n is the complete bipartite graphs with parts of m and n vertices.

A cycle C5 A path P5 A complete graph K5 A complete bipartite graph K2,3

Figure 1: Some standard graphs

A direct product F ×G of two graphs is the following graph. Its vertex set is the set of all pairs (v, w), where v is a vertex of F , w

is a vertex of G. The vertices (v1, w1) and (v2, w2) are joined by an edge, if either v1 = v2 and G contains the edge w1w2, or w1 = w2

and F contains the edge v1v2. The graph G × P1 is called the double of graph G. Dum-bell is a graph consisting of either two odd
cycles which share exactly one common vertex, or two odd cycles joined by a path of an arbitrary length.

Figure 2: Graph C5 × P2 Figure 3: Graph and its double Figure 4: Dum-bells

1 Examples

1.1. Show that magic graphs with less than 5 vertices do not exist, except the graph P1 (one edge).

1.2. Prove that a bipartite graph with odd number of vertices is non magic. Could it be semimagic?

1.3. Determine wether these graphs are semimigic or magic (the answers may depend on n and m)
a) Kn; b) Km,n; c) Pn × P1; d) Pn × Pm при n, m > 1; e) Cn × P1; f) Cn × Pm, n > 3, m > 1;
g) cycle of 2n vertices, where every two opposite vertices are joined by edge.

2 Semimagic graphs

2.1. Prove that if a semimagic graph G contains an even cycle then G contains also a semimagic skeleton (i. e. the skeleton
which is a semimagic graph itself) such that not all the edges of the cycle belong to this skeleton.
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2.2. Prove that if a semimagic graph G contains a dum-bell then G contains also a semimagic skeleton such that not all the
edges of the dum-bell belong to this skeleton.

2.3. Prove that each semimagic graph has 1-2-skeleton.

2.4. The main theorem about semimagic graphs. Prove that a graph is semimagic if and only if each of its edges belongs to
some 1-2-sceleton.

In the following problems we find out when a graph contains 1-2-skeleton. We call a graph soft if it does not have 1-skeleton, and
solid if it contains 1-skeleton. A soft graph is called saturated if it turns solid when an arbitrary edge has been added.

Let G be an arbitrary graph, S is an arbitrary set of its vertices. Denote by G \S the graph obtained by deletion of all the vertices
of the set S and its edges.

2.5. Let G be a saturated soft graph, S be the set of all its vertices such that each of them is joined with all other vertices.
Prove that all components of the graph G \ S are complete graphs.

2.6. The main theorem about saturated soft graphs. A graph G is saturated and soft if and only if either
a) G is a complete graph with odd number of vertices, or
b) the number of vertices of G is even and we can split it onto complete graphs S0, G1, G2, . . . , Gk, where k = |S0| + 2,

such that for all i the number of vertices in Gi is odd and every vertex of Gi is joined with all the vertices of S.

2.7. Prove that a graph G is solid if and only if for each set S of vertices of G the graph G\S has at most |S| odd components.

2.8. Prove that graph G contains 1-2-skeleton if and only if for each set S of vertices of G the graph G \ S has at most |S|
isolated vertices.

3 Magic graphs

3.1. Prove that each magic graph has the following two properties:
(1) Every edge of the graph belongs to some 1-2-skeleton.
(2) Every two edges are separated by some 1-2-skeleton.

3.2. Prove the converse statement: if a graph has these two properties then it is magic.

3.3. Graph G′ is obtained from magic graph G by adding a new edge and this new edge belongs to some 1-2-skeleton of
graph G′. Prove that G′ is magic.

3.4. Graph G consists of two (non isomorphic) components, each component has at least 3 vertices. Both components are
magic graphs. Is it true that G is necessarily magic?

3.5. a) For each edge e in a semimagic graph G (without isolated edges) there exists a 1-2-skeleton, whose cyclic part does
not contain e. Prove that the double of G is magic.

b) G is a semimagic graph without isolated edges, H is an arbitrary connected graph without isolated edges. Prove that
G × H is a magic graph.

3.6. G is an arbitrary graph with at least 4 vertices. Graph G′ is obtained by adding one more vertex to G, and this vertex
is joined with all the “old” vertices of G. Prove that the graph G′ is magic if and only if the graph G is without isolated edges
and it has 1-2-skeleton.

3.7. a) Graph G has n > 5 vertices. The degrees of vertices of G are at least n
2 + 1. Prove that g is a magic graph.

b) Prove that for any large n there exist non semimagic graph such that the minimal degree of its vertices equals to
[n/2].

3.8. G is a connected magic graph with n > 5 vertices and r edges. Prove that r > 5
4n.

3.9. For n = 5, 6, 7, 8 construct a connected magic graph with n vertices and r edges, where r is the minimal integer that
satisfies the inequality r > 5

4n.

3.10. Construct an analogous graph for each n > 5.

3.11. Prove that there exists a connected magic graph with n vertices and r edges, if the pair (n, r) satisfies the inequality
5
4n < r 6

n(n+1)
2 .
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Semifinal

4 Regular graphs

We will not discuss when regular graphs of degree 1 and 2 are magic. Below we will consider regular graphs of degree at least 3.
A pseudocycle is an even cycle or dum-bell (remind that both cycles in dum-bell are even).
Consider an even cycle. Put alternatively on its edges weights 1 and −1, let all other edges have weight 0. We say that two edges

are weakly separated by the cycle if they have had different weights. Analogously, for each dum-bell, put the weights ±1 and ±2 on its
edges as in fig. 5 (where a = 1), and let all other edges have weight 0. We say that two edges are weakly separated by the dum-bell if
they have had different weights. Finally, we say that two edges are weakly separated by a pseudocycle if there exists an even cycle or a
dum-bell that weakly separates these edges.

A
a−a

a a−a
−2a 2a

−a

−a

a

Figure 5: Alternative weights of dum-bell edges

4.1. Prove that every edge of the regular graph of degree d > 3 belongs to some pseudocycle.

4.2. Prove that the regular graph of degree d > 3 is magic if and only if any two of its edges are separated by pseudocycle.

4.3. Prove the following theorem. Let G be a regular graph of degree d > 3 and G1, . . . , Gk be its components. Then G is
magic if and only if all Gi are magic.

Index of edge connectivity ℓ(G) is the minimal number of edges of G that should be erased in order to obtain disconnected graph.

4.4. Let G be connected regular bipartite graph. Prove that the property “to be magic” or “to be non-magic” depends on
ℓ(G) only and completely investigate this dependance.

5 Addendum

5.1. To the problem 1.3.а. Graph is called supermagic if its magic weights are consecutive positive integers.
For which n graph Kn is supermagic?

5.2. To the problem 3.7. A graph has 2009 vertices of degree at least 1006. At most 500 edges were deleted. Prove that the
rest graph is still magic.
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Solutions

1 Examples

1.1. If a graph with 4 vertices has 1 or 2 edges then it has isolated vertex. If it has 3 or 4 edges then it contains two adjacent
vertices of degree 2 and hence it is non-magic. The graph with 6 edges is necessarily K4, see problem 1.3а).

Finally, if it has 5 edges then it is isomorphic to the cycle ABCD with the diagonal AC. Then the sum of weights of
edges adjacent to vertices A and C equals 2s. Geometrically, it is the sum of weights of all edges, where the weight of AC
has multiplicity 2. The other way to obtain the sum 2s is to sum up the weights of edges adjacent to vertices B and D. This
is a sum of all edges of the graph except AC. Therefore AC has zero weight, which is forbidden.

1.2. An s w e r: the graph is not semimagic. Let one part of the graph contains k vertices, the second part contains ℓ vertices,
and let s be the sum of weights of all edges adjacent to the same vertex. If the graph is semimagic, then the sum of weights
of edges adjacent to vertices of the first part equals ks, the sum of weights of edges adjacent to vertices of the second part
equals ℓs, and both sums equals the sum of weights of all edges of the graph. Therefore ℓ = k. This is impossible because
the total number of vertices is odd.

1.3. a) An s w e r: the graph is always semimagic, it is magic for n = 2 and n > 5 only.
To show that the graph is semimagic take all weights equal to 1.
If n = 3 the graph is not magic, it is evident.
If n = 4 we have 4 vertices A, B, C, D. Assume that it is magic, let s be the sum of weights of all edges adjacent to the

same vertex. Then 2s is the sum of all edges adjacent to vertices A and C, i.e. the sum of all edges of the graph except CD
but with weight of AC counted twice. By the analogous consideration for vertices B and D we will obtain that the weights
of AC and BD coincide.

If n > 5 the graph is magic. We will prove this by the following construction. Since the graph is regular, we may consider
arbitrary weights (not necessarily positive), because in the regular graph we can make all the weights to be positive by adding
a large positive constant. Let us describe the main construction of magic weights for the regular graphs by means of even
cycles.

Write out all even cycles that are contained in our graph and enumerate them by numbers from 1 to N (where
N is the total number of these cycles). For any k put the weights ±3k alternatively on the edges of k-th cycle.
After that for each edge sum up all the weights on it.

Let us check that this set of weights is magic. Indeed, the sum of weights of edges adjacent to every vertex equals 0,
because the contribution of each cycle to this sum is 0. Now let us check that all weights are distinct. For each edge of the
graph write out the list cycles which contain this edge. It is clear that for any two edges there exists an even cycle that
contains one of these edges only. Therefore for any two edges their lists of cycles do not coincide. But then the sums of
weights determined by the cycles are not equal. This is because the weights obtained by our construction may be regarded
as N -digital ternary numbers in system (with base 3) with digits 0 and ±1. Since all lists are distinct then all these ternary
numbers are distinct also.

b) An s w e r: the graph is semimagic for m = n only. For m = n > 2 it is magic.
The equality m = n is necessary for the graph to be semimagic (see problem 1.2).
If m = n the graph is regular and hence semimagic. If m = n = 2 it is evidently non-magic (see problem 1.1). And if

m = n > 2, the graph is magic, due to construction from the previous solution.

c) An s w e r: the graph is semimagic but non-magic.
To show that it is semimagic it is sufficient to assign weights of all edges to be 1, except leftmost and rightmost edges of

weight 2. The graph is non-magic because it contains adjacent vertices of degree 2.

d) An s w e r: the graph is magic if either m or n is odd. If both m and n are even, then the graph is not semimagic.
If both m and n are even, then the graph is bipartite with (n + 1)(m + 1) vertices (odd number). This graph is not

semimagic due to problem 1.2.
Now prove that the graph is magic for odd n and m > 1.
At first consider case m = 2. Consider the initial placement of nonnegative semimagic weights depicted on fig. 6: bold

edges have weight 2m, dashed edges have weight 0, all other edges have weight M , where M is a big number, that we will
choose later. This set of weights is almost semimagic, but some weights here are zero and the graph is not regular.

Figure 6: Almost semimagic weights on graph Pn × P2

Now we will perform the main construction of magic weights for the regular graphs by means of even cycles, but with
3 corrections (because our graph is not regular):
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1) In the main construction we will consider 4-cycles only (i.e. the sides of cells).
2) The final weight of an edge will be equal to the sum of its initial weight and the weight obtained by the main

construction.
3) When we assign positive and negative weights of edges in cycles, we choose plus sign for edges whose initial weight has

been equal to zero.
Finally, choose M so big that all the final weights turn out to be positive and distinct. Then this set of weights will be

magic.

Now consider a case n is odd, m > 2. We perform analogous actions. The initial weights are depicted on fig. 7 (odd
number n corresponds to the vertical side of the picture).

Figure 7: Almost semimagic weights on graph Pn × Pm

e) An s w e r: the graph is always semimagic. It is magic for even n only.
We may realize this graph as edges of n-gonal prism.
Let n = 2k. The graph contains evident cycles of length 4 (sides of facets) and two 2k-cycles (sides of bases). The property

“for any two edges there is a cycle that contains one of them only” is satisfied. Therefore we can perform the main construction
for regular graphs.

Let us prove that the graph is non-magic for n = 2k + 1. As usual let s be the sum of weights of edges adjacent to the
same vertex. It is easy to see that the sum of weights of all edges equals nd. Denote our prism by A1A2 . . . A2k+1B1 . . . B2k+1.
The sum of weights of edges adjacent to vertices A1, A3, . . . , A2k+1, B2, B4, . . . , B2k, equals nd and can be interpreted as
the sum of weights of all edges of the graph except B1B2n+1 and with edge A1A2n+1 counted twice. Hence, the weights of
A1A2n+1 and B1B2n+1 are equal.

f) An s w e r: the graph is magic.
Solution is analogous to solution 1.3d). Let A1, . . . , Am+1 be vertices of graph Pm. Initial placement of nonnegative

weights on the graph looks as follows: all edges of subgraphs of the form Cn × Ai have weight 2, all other weights are 0. We
apply the main construction for 4-cycles only.

g) An s w e r: the graph is always semimagic; it is magic for odd n.
It is semimagic because it is reguar. For n = 2 this graph is K4, we discuss it in problem 1.3 a). For odd n it is magic

because the main construction works (we have a good store of even cycles here: 4-cycles that contains subsequent diameters
and (n + 1)-cycles of the form “semicircle”).

For even n the graph is non-magic. Let A1A2 . . . AnBn . . . B2B1 be vertices of the given cycle. The set of edges adjacent
to all vertices Ai, Bi, where i runs over odd numbers, is the set of all edges of the graph except AnBn and with A1B1 counted
twice. It follows that in any semimagic set of weights the opposite edges of the cycle have the same weight.

2 Semimagic graph

2.1. Let a be the minimal weight of the edges in the given cycle. We will move along the cycle and decrease and increase
by a alternatively the weights of the edges of the cycle. After that erase all the edges with zero weight. The remaining graph
together with the weights of its edges will be desired semimagic skeleton.

2.2. Let A be the vertex of degree 3 (or 4) of one of odd cycles of the dum-bell. We will bypass the dum-bell starting from
the vertex A. First of all we will move along the odd cycle and assign the weights to its edges to be ±a alternatively. After
return to the vertex A, we have two edges of weight a adjacent to A. Then we move along the handle of dum-bell and assign
the weights of its edges to be ∓2a alternatively. After that we move along the second cycle assigning its edges weights ±a
alternatively. We obtain semimagic weights with s = 0 (see fig. 5).

Now we are going to add new weights to old ones. For this choose the value of parameter a so that all the weights of
the graph would be nonnegative and the weight of at least one of the edges would be equal to 0. We will obtain semimagic
weights. After erasing all the edges with zero weight we obtain the desired skeleton.

2.3. The constructions of solutions 2.1, 2.2 allow us to decrease consequently the number of edges in the graph by destroying
its even cycles and dum-bells. The graph will be semimagic during all these operations and therefore there will be no pendant
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vertices in it (except the endpoints of isolated edges). Observe that if a component of the graph contains two even cycles
then it contains also an odd cycle or a dum-bell. And if a component contains exactly one (odd) cycle and does not contain
pendant vertices then this component is exactly this odd cycle.

So, after destroying all even cycles and dum-bells we will obtain a graph consisting of several isolated edges and several
(odd) cycles.

2.4. Let us check that every edge of a semimagic graph belongs to some 1-2-skeleton. Let G be a graph with minimal number
of edges such that one of its edges, say, e does not belong to any 1-2-skeleton. Fix a set of semimagic weights W on graph G.
Fix an arbitrary 1-2-skeleton and construct one more semimagic set of weights S as follows. Let each edge of the linear part
of the skeleton has weight a, each edge of the cyclic part has weight a/2 and all other edges (including e) have weight 0.
Choose the value of a so that all the weights of the set S do not exceed the corresponding weights in the set W and for
at least one edge we have an equality. Now subtract from weights of W the weights of S. We obtain a semimagic set of
weights, where not all the weights are equal to 0, because the weight of edge e has not changed. Now remove all edges of zero
weight. We obtain semimagic graph G′ which is a skeleton of G. G′ contains less edges than G and edge e does not belong
to any 1-2skeleton of G′, because “the skeleton of my skeleton is my skeleton”. This is a contradiction with the definition of
G. Therefore the graph G does not exist.

Now let us check that if every edge of the graph belongs to some 1-2-skeleton, then the graph is semimagic. For each
1-2-skeleton assign the weight of its cyclic edges be 1 and the weight of its isolated edges be 2. We obtain semimagic set
of weights (but with zero weights). Let us sum up all these set of weights over all 1-2-skeletons. The result is the desired
semimagic set of weights.

2.5. We take this problem and the following solution from [1, § 3.1.2]. Let A, B, C be vertices of G \ S and B is joined with
both A and C. It is sufficient to prove that graph G contains edge AC. Assume that this is not true. By the definition of the
set S graph G contains the vertex D such that the edge BD does not belong to the graph. If we add edge AC to graph G,
then the new graph has 1-skeleton (since graph G is saturated). It is clear that edge AC must belong to this skeleton. Color
this skeleton in red. Analogously, if we add edge BD to graph G, we can find blue 1-skeleton containing edge BD. Now from
these two skeletons we will construct a 1-skeleton of graph G and get a contradiction.

Consider the union of these skeletons; the edges which are red and blue simultaneously we will consider as usual (non-
multiple) edges. Then this union is a 1-2-skeleton of graph G ∪ AC ∪ BD, and all its cycles are even because red and blue
edges alternate.

It is clear that edges AC and BD are both in the cyclic part. If these edges belong to different cycles, then the desired
1-skeleton can be constructed as follows. Take the red skeleton and replace all red edges of the cycle that contains AC by
blue edges of the same cycle. Now consider the second case, let edges AC and BD belong to cycle γ. Let us bypass cycle γ
starting from vertex B and edge BD till we reach vertex A or C. Let it be A for definiteness. Since the red edge of vertex A
is AC, we finish our movement by blue edge. Hence the path from B to A starts and finishes with blue edges. Take the blue
skeleton, replace all blue edges of the path by red edges of the same path and add edge AB. We obtain 1-skelton of graph
G.

2.6. We take this problem and the following solution from [1, § 3.1.2]. It is evident that a soft saturated graph with odd
number of vertices is necessarily complete. Let the number of vertices in G be even; let S be the set of all vertices of G that
are joined with all other vertices and s be the number of these vertices; let G1, G2, . . . , Gk be components of connectivity
of graph G \ S. Due to the statement of the previous problem we know that they are all complete graphs.

If G \S has at most s odd components, construction of the 1-skeleton is trivial. Assume that G \S has at least s + 1 odd
components; taking into account parity of number of vertices of G, we conclude that G\S has at least s+2 odd components.
If the number of odd components is greater than s + 2, join any two of them by an edge. We obtain graph G1 such that
graph G1 \S has more than s odd components of connectivity. There are no 1-skeletons in this graph (it is evident, it follows
also from the easy part of the statement of problem 2.7), but this is impossible because graph G is saturated.

Thus, graph G has exactly s + 2 odd components. It can not have even components due to analogous reasons.

2.7. This statement is classical Tutte theorem. The following proof is from [1, § 3.1.2].
If we can find the set of vertices S in graph G, such that graph G \ S has more than |S| odd components of connectivity,

then graph G is soft. It is clear.
Check the converse statement. Assume that for any subset S of the set of vertices of G graph G \ S has at most |S|

components of connectvity but at the same time graph G is soft.
The number of vertices of graph G is even because otherwise S = ∅ leads to the contradiction. Add several edges to

graph G to obtain soft saturated graph G′. Let S′ be set of vertices joined with every vertex of G′, s be number of its
elements. Since G′ and G have equal (even) number of vertices due to main theorem about soft saturated graphs we have
that graph G′ \ S′ contains s + 2 odd components, each of them is a complete graph. Now remove those edges we have add
making graph saturated. It is possible that some components of graph G′ \ S′ will fall to parts but at least one part of odd
component will be odd and the total number of odd components will be grater than s. Thus, the set S′ disproves the property
of G under consideration.

2.8. Let n be the number of vertices of graph G. Construct a new graph G′ with 2n vertices. For every vertex v in G take
two vertices v′ and v′′ in G′; for every edge uv define two edges in G′: u′v′′ and u′′v′ Then G′ is a bipartite graph, that has
twice as many edges as G.

Remark that the existence of 1-2-skeleton in G is equivalent to the existence of perfect matching in G′. Indeed, for each
cycle v1v2 . . . vℓ of the skeleton graph G′ has edges v′1v

′′

2 , v′2v
′′

3 , . . . , v′ℓv
′′

1 ; analogously for any isolated edge graph G′ contains
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edges u′v′′ and v′u′′. It is clear that all these edges form a perfect matching. Conversely, for any perfect matching of graph G′

it is not difficult to construct a 1-2-skeleton. For example, the edges u′v′′, v′w′′, w′z′′, z′u′′ of the perfect matching determine
a cycle uvwz of the graph G, and edges u′v′′ and v′u′′ determine an isolated edge uv of the skeleton.

As we know, for each set S of vertices of G the graph G \ S has at most |S| isolated vertices. Let us reformulate this
property in terms of graph G′. Consider an arbitrary set S of vertices of graph G. What does it mean that after deletion of
this set the vertex u becomes isolated? This means that in the graph G′ all neighbours of u′ belong to S′′. If after removing
set S we have k > |S| isolated vertices then the conditions of Hall theorem is not satisfied in graph G because we found
a set of k vertices that has at most |S| neighbours (the last number is less then k). The converse is also true (i.e. if the
conditions of Hall theorem is not satisfied, then the property under discussion holds). Therefore this property is equivalent
to the conditions of Hall theorem in graph G′ that is equivalent to existence of perfect matching in G′.

3 Magic graphs

3.1. (1) All the semimafic graphs have this property.
(2) We will prove more general fact: if a semimagic graph has a semimagic set of weights such that two edges, say e1 and

e2, have distinct weights, then the edges e1 and e2 are separated by a 1-2-skeleton.
It can be done analogously to the solution of problem 2.4. Choose a minimal graph; fix a set of weights, where not all

weights are equal; subtract by a suitable way the weights belonging to a skeleton; we will obtain smaller graph. Since the
initial graph was minimal, one of edges e1, e2 must receive zero weight and should be removed. In the remaining graph the
second edge due to statement of problem 2.4 belongs to some 1-2-skeleton, that sepapates these edges in the initial graph.

3.2. Let us enumerate all the 1-2-skeletons. Let the edges of cyclic part of k-th skeleton have weights 3k, and edges of linear
parts have weight 2 · 3k. For each edge sum up all its weights over all 1-2-skeletons. The set of weights obtained is semimagic
due to uniqueness of ternary notation of numbers.

3.3. It follows from 3.2.

3.4. An s w e r: no, graph G is not necessarily magic. Two magic graphs are depicted on the fig. 8 For any set of magic weights
the edges denoted by dashed lines must have weight s/2.

Figure 8: Union of magic graphs can be non-magic

3.5. a) The double G2 consists of two copies G1 and G2 of the graph G and of the set of edges E between the corresponding
vertices. The corresponding edges in parts G1 and G2 are called parallel. The edges from the set E are called vertical.
A subgraph of G2 consisting of two copies of some subgraph of G is called duplicated.

First of all describe a construction of rotation of parallel edges in G2. Let subgraph H of graph G2 be the union of
two subgraphs in parts G1 and G2 (without vertical edges) such that these subgraphs contain parallel edges A1B1 and
A2B2. Let us replace edges A1B1, A2B2 in subgraph H by edges A1A2 and B1B2. Denote the new subgraph by H ′. We say
that subgraph H ′ is obtained from H by the rotation of parallel edges. It is clear that both of H and H ′ are (or are not)
1-2-skeletons.

To prove that graph G2 is magic let us apply criterion from problems 3.1–3.2.
(1) Every edge belongs to 1-2-skeleton. It is clear for edges from G1 (and from G2): duplicate the 1-2-skeleton containing

this edge in G1. For vertical edges choose suitable rotation of edges of appropriate duplicated 1-2-skeleton.
(2) Every two edges are separated by 1-2-skeleton.

• If both of edges e1 and e2 belong to G1 consider a duplicated 1-2-skeleton containing e1. If it does not separate e1 and
e2, then both edges belong to the skeleton. By rotating edge e2 and its parallel copy we obtain a separating skeleton.

• If e1 belongs to G1, and e2 belongs to G2, consider the union of 1-2-skeleton in G1 containing e1 (it exists due to the
statement of problem 2.4), and 1-2-skeleton in G2 that does not contain e2 (it exists by the condition of the problem).

• If e1 belongs to G1 and e2 is vertical consider a duplicated skeleton containing e1.

• Finally, if both of edges A1A2 and B1B2 are vertical choose in G1 an edge A1X1 (where X1 6= B1) or B1Y1 (where
Y1 6= A1), this edge exists since G has no isolated edges. Consider a duplicated skeleton containing this edge and rotate
this edge together with parallel edge.

b) Analogously to a).

3.6. We take the statement of the problem from [5]. The following solution was found by participants of the conference.
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1. Check that if graph G′ is magic then graph G has 1-2-skeleton and has no isolated vertices and edges. Isolated vertex
in G corresponds to a pendant vertex in G′. Isolated edge in G corresponds to two adjacent vertices of degree 2. Both
constructions are impossible in a magic graph.

Assume that G does not contain 1-2-skeleton.
Denote by S the new vertex of graph G′. Fix an arbitrary 1-2-skeleton in graph G′, w.l.o.g. we may assume that all its

cycles are odd. Consider the component of the skeleton that contains vertex S. If this component is an odd cycle, remove
vertex S and split other vertices of the cycle on pairs. Together with other components of the skeleton they form a skeleton of
graph G. Therefore we may assume that this component is an isolated edge SA1. Now we will construct two sets of vertices
A = {A1, . . . , An} and B = {B1, B2, . . . , Bn} such that the edges AiBi (1 6 i 6 n) belong to skeleton K and all the vertices
adjacent to vertices of the set A belong to B.

Let A = {A1}, B1 = S. Assume that the sets A = {A1, . . . , Ak} and B = {B1, . . . , Bk} have constructed already and
there is an edge that joins some vertex of the set A with some vertex outside A ∪ B, say AkBk+1. Vertex Bk+1 belongs to
some component of the skeleton K. If this component is an odd cycle we can easily reconstruct the skeleton K to obtain
a 1-2-skeleton of graph G.

To do this consider the shortest path in A∪B from B1 to Bk+1 such that the vertices of A and B alternate. The
path has even length, choose all its even edges (the last of them has endpoint Bk+1) and split onto pairs all other
vertices of the odd cycle.

Therefore we may assume that vertex Bk+1 belongs to the isolated edge Bk+1Ak+1 of skeleton K. Then place vertex Bk+1

to the set B and vertex Ak+1 to the set A.
We will increase sets A and B by this algorithm until it is possible. As a result we obtain that the set A is joined by

edges with A ∪ B only. Assume there exists an edge AiAj consider the shortest path between these two vertices such that
the vertices of A and B alternate in it (the existence of this path can be easily seen from the process of construction of sets
A and B). This path together with edge AiAj form an odd cycle. Then the skeleton K can be reconstructed to the skeleton
of graph G as described above.

So we have sets A and B. Since these sets have equal number of elements, the sums of weights of their vertices are equal.
But the sum of weights of A equals the sum of weights of all edges AiBj while the sum of weights of B equals the sum of
weights of all edges AiBj and edges of the form B1Bi (remind that B1 = S is adjacent to all other vertices of graph G). We
obtain a contradiction.

2. The proof of the converse statement — if graph G has 1-2-skeleton and does not contain isolated edges, then G′ satisfies
conditions of the problem 3.1 (and therefore it is magic) — is not difficult technical exercise. The skeletons that we need for
edge separating can be constructed by a suitable transformation of skeleton in G.

3.7. а) Prove that an arbitrary two edges e and f can be separated by some 1-2-skeleton. Remove the endpoints of edge e
(and all their edges) from the graph G. The remaining part of the graph has n − 2 vertices of degree at least n

2 − 1 = n−2
2 .

Then it is known that there is a Hamiltonian cycle in this graph (the cycle that passes trough all the vertices of the graph).
This cycle together with edge f forms 1-2-skeleton that separates edges e and f .

b) Consider the graph G with n = 2k vertices X1, . . . , Xk, Y1, . . . , Yk such that its set of edges consists of all edges XiYj

and edge Y1Y2. The degree of each vertex Xi is at least k = n
2 . Let us prove that G is non semimagic.

Consider an arbitrary 1-2-skeleton of G. In this skeleton each vertex Xi has one or two adjacent vertices among the
vertices Yi. Since we have equal number of vertices of both types, the 1-2-skeleton must be perfect matching. Therefore edge
Y1Y2 does not belong to any 1-2-skeleton. Hence graph G is non-magic.

3.8. A magic graph has no vertex of degree 1 and any two vertices of degree 2 are not adjacent in it. Let V be the set of
vertices of degree 2 (possibly, V = ∅), W be the set of vertices of degree at least 3. Let s be the sum of weights in each
vertex. The sum of weights of edges that have an endpoint in V equals s|V |. The second endpoints of these edges belong to
W , therefore this sum does not exceed s|W |. So, |V | 6 |W |. The sum of degrees of all the vertices is at least 2|V | + 3|W |
hence the number of edges is not less than |V | + 3

2 |W |. But |V | + 3
2 |W | >

5
4 (|V | + |W |) = 5

4n, because |W | > |V |.
The equality would be possible if there are no edges with both endpoints in W , i.e. in a bipartite graph. But in this case

s|V | = s|W |, so |V | = |W |. Then the number of edges between V and W equals 2|V | (from the point of view of the set V )
and in the same time it is at least 3|W |. Hence |V | >

3
2 |W | that is impossible. The inequality r > 5

4n is proven.

3.9. See fig.9.
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Figure 9: Minimal magic graphs

3.10. Magic graphs with minimal number of edges are depicted on fig. 10 a, b, c, e, f). For n = 4k we have bipartite and
non bipartite examples, for n = 4k + 2 we have bipartite example only, in other cases the graphs are non bipartite.
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a) n = 4k, r = 5k + 1, bipartite graph b) n = 4k, r = 5k + 1, non bipartite graph

c) n = 4k + 2, r = 5k + 3, bipartite graph d) n = 4k + 2, r = 5k + 4, non bipartite graph

e) n = 4k + 1, r = 5k + 2, non bipartite graph f) n = 4k + 3, r = 5k + 4, non bipartite graph

Figure 10: Magic graphs with minimal number of vertices

The proof that the depicted graphs are magic consists of the routine verification that criterion from problems 3.2 holds.
Instead of this this verification we show magic sets of weights for “typical case”. Of course, this is not the proof but it follows
that in concrete cases we really have magic graphs whose edges are separated in the spirit of the criterion. In general case the
graphs will be magic too because the separation of its edges takes place “by the same reasons” as in this concrete examples.
We restrict ourselves with case n = 4k + 3, r = 5k + 4, k = 2; see fig. 11.

3.11. This solution is a variation of [3]. Observe that if we add an arbitrary edge to non bipartite, connected (and non
complete) magic graph then it remains be magic.

Indeed, the new edge e belongs to some cycle. If this cycle is even, assign the weight ε to this edge and the weight ±ε
alternatively to all other edges of the cycle. Choose the value of ε so that all the weights remain positive and distinct. We
obtain a magic set of weights.

If the cycle is odd choose another cycle that does not contain e (it exists because the graph is non bipartite). Then e
belongs to some dum-bell (see lemma from solution 4.1) Once again, we can assign the weight ε to edge e and weights ±ε,
±2ε to other edges of dum-bell and obtain a magiс set of weights.

Thus, to complete the solution it is sufficient for each n > 5 to construct “minimal” non-bipartite graph. It was done in
the solution of the previous problem for n 6= 4k + 2 (see fig. 10 b, e, f). We found these examples in [3]. Unfortunately, the
construction of minimal non-bipartite graph for n = 4k + 2 in this article is wrong. In addition, the graph on fig. 10 b) is not
magic for n = 8 (it is impossible to separate by 1-2-skeletons the slanted and the lowest edges). Magic non bipartite graph
for n = 8 is depicted on fig. 9 d), it was invented by A. Tsybyshev. We do not know wether non bipartite magic graph with
4k + 2 vertices and 5k + 3 edges (k > 3) exists, so for the case of 5k + 3 edges we leave bipartite example, and begin our
construction from non bipartite graph with 5k + 4 edges. This non bipartite graph with 4k + 2 vertices and 5k + 4 edges is
depicted on fig. 10 d). Magic weights on this graph for k = 3 see on fig. 12.
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Figure 11: n = 4k + 3, r = 5k + 4, k = 2
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Figure 12: n = 4k + 2, r = 5k + 4, k = 3

4 Regular graphs

4.1. S o l u t i o n 1.
L e m m a. If a connected graph contains two odd cycles, and an edge e belongs to only one of them, than there exists an

even cycle or a dum-bell that containпs edge e.
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P r o o f. The statement is trivial if cycles do not intersect or intersect by one vertex.
Assume that intersection of the cycles contains at least two vertices. Let X and Y be the endpoints of edge e. Remove

edge e from the first cycle, the remaining part of this cycle we will call the path XY . Let A and B be the first and the last
vertex in the path XY that belong to the second cycle. Then the parts XA and BY of the path XY do not intersect the
second cycle. Vertices A and B split the second cycle onto two paths whose number of vertices have different parity. Adding
one of them to paths XA and BY we can obtain an odd path XABY . Together with edge XY it forms an even cycle.

Let us return to the statement of the problem. W.l.o.g. we may assume that the graph is connected. Remove an arbitrary
edge e = AB from the graph. Assume that graph G \ e falls to two components of connectivity. Since the degrees of all
vertices were greater than 1 these components contain more than one vertex. Either of components can not be a bipartite
graph. This is because in the bipartite graph the sums of degrees of all vertices in parts are equal, but in our components
one of sums is divisible by d and another (which contains vertex A or B) is not divisible by d. Therefore each component
contains an odd cycle. Hence edge e belongs to some dum-bell.

Now assume that the graph G \ e is connected. Consider an arbitrary path from A to B. If this path has odd number of
edges then e is contained in an even cycle. Assume that this path is even (then e is contained in odd cycle). If graph G \ e is
bipartite then both vertices A and B are in the same part. But this is impossible because the sums of degrees in the parts
are not equal: first sum is equivalent −2 (mod d) and the second sum is divisible by d. Hence graph G \ e is non bipartite
and there exists an odd cycle that does not contain e. It remains to use lemma.

S o l u t i o n 2 (by A. Tsybyshev). Assign weights 1/d to all edges of our regular graph. Then sum of weights in each vertex
is equal to 1. Now start the process of destroying even cycles and dum-bells by changing weights and removing zero-weight
edges that is described in the solution 2.3. As a result of this process we obtain a 1-2-skeleton with magic set of weights.
Since we do not change the sum of weights in each vertex the sum of weights in each vertex is still equal to 1. Therefore
the weights of edges are 1 and 1/2. Since d 6= 1, 1/2, 0 we change the weight of every edge at least once. Hence each edge
belongs to some pseudocycle.

4.2. The placement of numbers ±1 on even cycles and ±1, ±2 on dum-bells that was described in section 4 (problems) we
will call standard weights on pseudocycle.

L e m m a. Let every edge of the graph has non zero (not necessarily positive) weight and sum of weights in each vertex
is equal to 0. Then every edge is contained in even cycle or dum-bell.

The proof is analogous to the solution of the problem 4.1.

1. Assume that the regular graph G is magic and sum of weights in each vertex is equal to s. Subtract the number s/d
from every weight. We obtain a placement of pairwise distinct numbers on edges of the graph with zero sum in each vertex.

Choose in the graph G an arbitrary edge of non zero weight and a pseudocycle that contains this edge (it exists due to
lemma). Subtract from the weights of this pseudocycle the standard weights of the pseudocysle multiplyed by the appropriate
coefficient in order to make the weight of chosen edge to be zero. Then remove all zero-weight edges. We obtain a placement
with zero sum in each vertex. Then repeat this operation and so on.

In each step we decrease the number of edges therefore sooner or later all edges become zero-weight It means that the
initial placement of numbers is a “sum” with appropriate coefficient of standard placements for pseudocycles. Since any two
edges have distinct weights in the initial placement, there exists a pseudocycle such that its standard weights for this edges
are distinct. By definition this pseudocycle weakly separates these edges.

2. Assume that every two edges are weakly separated by pseudocycles. Let us enumerate all pseudocycles. For k-th
pseudocycle assign weights of its edges to be the standard placement multiplyed by 5k. For each edge sum up its weights
over all pseudocycles and after that add a large positive constant in order to make all weights positive. The obtained set of
weights is magic.

4.3. It follows from the previuous problem.

4.4. 1. Let us check first that ℓ(G) 6= 1. If ℓ(G) = 1 then we can remove an edge e and obtain the graph with two components
of connectivity. Each component itself is a magic graph, one of its vertices has degree d − 1 and all others have degree d.
This is impossible (see solution 4.1).

2. Prove that if ℓ(G) > 3, then graph G is magic. Choose any two edges e and f and check that they are weakly separated
by pseudocycles. After removing these edges the graph remains connected. Therefore there exists a cycle that contains e and
does not contains f . Since the graph is bipartite this cycle is even and it separates edges e and f .

3. Prove that for ℓ(G) = 2 graph G is non magic. If after removing edges e and f from graph G we obtain a disconnected
graph then it has two components, say V and W , each of them is a bipartite graph. If the edges e and f have common
endpoint then one of components has unique vertex of degree d − 2 and other vertices of degree d. Such graph can not be
bipartite. Therefore e = AB and f = CD have no common vertices, one component contains vertices A and C, another
component contains vertices B and D of degree d − 1. Hence B and D are in different parts of the component and all the
paths that join these points have odd number of edges.

Now prove that edges e and f are not weakly separated by a pseudocycle. Since G is bipartite there are no even cycles
(and dum-bells) in it. And all even cycles that contain both e and f do not separate these edges due to previous paragraph.
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