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1 Main problem

Problem 1. The language of Winnie-Pooh tribe has 100 words. All possible combinations of these words, in any
order, are used as sentences of the language. The are two magic spells, “Earth stands on Great Crocodile” and
“Every evening Crocodile swallows Sun”, that cause tornado. That is why it is not allowed to pronounce sentences
that contain the above sequences of words1. How many sentences of 20 words in this language are allowed?

Problem 2. A computer uses 256 commands. There is a sequence of four commands that breaks the computer.
The programmers made all possible programs of 7 commands. Find the percentage of the programs that do not
break the computer.2

Problem 3 (Main Problem). The alphabet of a language 𝐿 consists of 𝑁 letters. Several words 𝑣1, . . . , 𝑣𝑘 are
called forbidden and are not used in the language. A word (that is, a finite sequence of letters) is called admissible
if no part of it is a forbidden word. Find the number of admissible words of 𝑛 letters in 𝐿.

Problem 4. Show that the Problems 1 and 2 are special cases of Problem 3.

2 How to write down the answer?

Choose an alphabet 𝐴 of 𝑁 letters (for example, if 𝐴 = (𝑎, 𝑏, 𝑐, . . . , 𝑧), then 𝑁 = 26). By a word we will mean an
arbitrary finite sequence of letters of the alphabet 𝐴. A part of a word is called its subword.

We assume that every language 𝐿 has exactly one word of zero length, that is, an empty word.
We assume that distinct forbidden words are not subwords of each other. We also assume that each forbidden

word has at least two letters, that is, the empty word and one-letter words are admissible. Recall that the set of
forbidden words is finite.

Problem 5. The free language 𝐹𝐴 over the alphabet 𝐴 is the language with no forbidden words. Prove that the
number of the words of 𝑛 letters in this language is equal to 𝑁𝑛.

Problem 6. Let 𝐵 be the language whose forbidden words are all two-letter words with different letters. Prove
that the number of admissible words of 𝑛 letters in the language 𝐵 is equal to 𝑁 for any positive integer 𝑛.

Let 𝑀 be an arbitrary set of words. Let us denote by 𝑚𝑛 the number of 𝑛-letter words in this set. The infinite
sum

𝑀(𝑥) = 𝑚0 + 𝑚1𝑥 + 𝑚2𝑥
2 + 𝑚3𝑥

3 + . . .

is called the dimension series of the set 𝑀 . The infinite sums of such type (with arbitrary numbers as coefficients
𝑚𝑛) will be briefly referred to as series (their complete name, which will not be used here, is formal power series).

For any language 𝐿, by its dimension series 𝐿(𝑥) we will mean the dimension series of the set of admissible words.
For example, for the free language 𝐹𝐴 its dimension series is the geometric series 𝐹𝐴(𝑥) = 1+𝑁𝑥+𝑁2𝑥2+𝑁3𝑥3+. . . ,
and for the language 𝐵 above we have 𝐵(𝑥) = 1 + 𝑁𝑥 + 𝑁𝑥2 + 𝑁𝑥3 + . . .

Problem 7. Write down the dimension series for the language over the alphabet {𝑎, 𝑏} with forbidden words 𝑎𝑎
and 𝑏𝑏.

3 The arithmetics of languages

If a set 𝑀 contains finitely many words, then its dimension series is a polynomial in the variable 𝑥. For infinite sets,
their dimension series are infinite as well, but they allow various arithmetic operations similar to the operations over
the polynomials, that is, addition, subtraction, multiplication by each other and by numbers, and even sometimes
division.

In the definitions and problems of this section, 𝑆 = 𝑠0 + 𝑠1𝑥 + 𝑠2𝑥
2 + . . . and 𝑅 = 𝑟0 + 𝑟1𝑥 + 𝑟2𝑥

2 + . . . are two
series, and 𝐿1 and 𝐿2 are two languages over alphabets 𝐴1 and 𝐴2 without common letters. We will assume that
the alphabet 𝐴1 consists of upper-case letters while the alphabet 𝐴2 consists of lower-case ones. Let the alphabet
𝐴 be the union of the alphabets 𝐴1 and 𝐴2, that is, 𝐴 contains both upper-case and lower-case letters.

1Even if the words are in other forms
2Similar story happened in 1990s with the first version of Pentium microprocessor.
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Definition 1. a) The sum of two series 𝑅 and 𝑆 is the series

𝑅 + 𝑆 = (𝑠0 + 𝑟0) + (𝑠1 + 𝑟1)𝑥 + (𝑠2 + 𝑟2)𝑥2 + . . .

b) The sum of two languages 𝐿1 and 𝐿2 is the language 𝐿1 + 𝐿2 over 𝐴 whose set of admissible words is the
union of the sets of admissible words of the languages 𝐿1 and 𝐿2.

Problem 8. Define the language 𝐿1 + 𝐿2 by a finite set of forbidden words.

Problem 9. Prove that if 𝐿 = 𝐿1 + 𝐿2, then

𝐿(𝑥) = 𝐿1(𝑥) + 𝐿2(𝑥)− 1.

The product of two series is defined by the same way as the product of two polynomials.

Definition 2. The product of a series 𝑅 by a monomial 𝑎𝑥𝑛 is the series

𝑅 · 𝑎𝑥𝑛 = 𝑎𝑟0𝑥
𝑛 + 𝑎𝑟1𝑥

𝑛+1 + 𝑎𝑟2𝑥
2𝑥𝑛+2 + . . .

The product of two series 𝑅 and 𝑆 is the sum

𝑅 · 𝑆 = 𝑅 · 𝑠0 + 𝑅 · 𝑠1𝑥 + 𝑅 · 𝑠2𝑥
2 + . . .

Note that this infinite sum of series is well-defined because the coefficient of every power of 𝑥 is a finite sum of
numbers.

Problem 10. Prove that
(1− 𝑥) · (1 + 𝑥 + 𝑥2 + . . . ) = 1.

Definition 3. The product of two sets of words 𝑀 and 𝑁 is the set 𝑀𝑁 of all words of the form 𝑚𝑛, where 𝑚 is
a word in 𝑀 and 𝑛 is a word in 𝑁 .

The product of two languages 𝐿1 and 𝐿2 is the language 𝐿1 · 𝐿2 over 𝐴 whose set of admissible words is the
product of the sets of admissible words of the languages 𝐿1 and 𝐿2.

Problem 11. Define the language 𝐿1 · 𝐿2 by a finite set of forbidden words.

Problem 12. Prove that
𝐿(𝑥) = 𝐿1(𝑥) · 𝐿2(𝑥).

The division of series has no version for languages, but it helps to write down their dimension series in a compact
form. It is defined by a formula similar to the formula for the sum of an infinite geometric progression.

Definition 4. Suppose that a series 𝑆 begins with the unit, that is, 𝑠0 = 1, and 𝑆 = 1+𝑆, where 𝑆 = 𝑠1𝑥+𝑠2𝑥
2+. . .

Then its inverse is the series
1
𝑆

= 1− 𝑆 + 𝑆
2 − 𝑆

3
+ . . .

The quotient of two series 𝑅 and 𝑆 is the series

𝑅

𝑆
= 𝑅−𝑅 · 𝑆 + 𝑅 · 𝑆2 −𝑅 · 𝑆3

+ . . .

In general, the quotient of two dimension series can not be obtained as the dimension series for a language. For
example, some of the coefficients of the quotient can be negative.

Problem 13. a) Prove that

𝑆 · 𝑅

𝑆
= 𝑅.

b) Prove that if 𝑆 · 𝑇 = 𝑅, where the series 𝑆 begins with the unit, then 𝑇 = 𝑅
𝑆 .

The use of the division of two series is that it helps to represent many infinite series by a finite formula, that
is, a quotient of two polynomials.

Problem 14. a) Prove that

𝐹𝐴(𝑥) =
1

1−𝑁𝑥
.

b) Represent the dimension series from Problems 6 and 7 as a quotient of two polynomials.

Problem 15. Prove that the dimension series of any language can be represented as a quotient of two polynomials.

Thus, the answer to our Main Problem should be represented as a quotient of two polynomials.
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4 Free word

Problem 16. Let 𝐿 be a language over the Latin alphabet with only one forbidden word “mouse”. Find 𝐿(𝑥).

Definition 5. Let 𝑎 and 𝑏 be words such that no one is a subword of each other. A nonempty word 𝑐 is called an
overlap of 𝑎 and 𝑏 if it is a beginning subword of 𝑎 and, in the same time, the final subword of 𝑏 (for example, the
word “all” is an overlap of the words “ball” and “allow”).

A word 𝑤 is called free if it has no overlaps with itself except for the whole word 𝑤 (e.g., the word “free” is free
but the word “underground” is not).

Problem 17. Suppose that in a language 𝐿 over an alphabet 𝐴 of 𝑁 letters there is a single forbidden word, which
is free and consists of 𝑚 letters. Prove that

𝐿(𝑥) =
1

1−𝑁𝑥 + 𝑥𝑚
.

Problem 18. Solve Problem 2 under the addition assumption that the sequence of commands breaking the computer
is a free word.

5 Transformations of words

Definition 6. Let 𝑀 and 𝑀 ′ be two sets of words. Let us divide the set 𝑀 in two parts 𝐾 and 𝐿. A function
𝑓 mapping 𝐿 to a subset 𝐼 of 𝑀 ′ is called a transformation of the set 𝑀 to the set 𝑀 ′ if 𝑓 preserves lengths of
words and is a one-to-one map of 𝐿 onto 𝐼.

In this case, the set 𝐾 is called the kernel of the transformation 𝑓 and the set 𝐼 is called the image of 𝑓 .

A transformation will be denoted by an arrow: 𝑀 =⇒ 𝑀 ′.

Definition 7. A sequence of transformations

𝑀1 =⇒ 𝑀2 =⇒ . . . =⇒ 𝑀𝑛

is called exact if the kernel of each subsequent transformation coincides with the image of the previous one.

Problem 19. Let 𝐿 be a language over an alphabet 𝐴, let 𝐺 be the set of admissible words, and let 𝑁 be the set
of all non-admissible words. Construct an exact sequence of transformations

∅ =⇒ 𝑁 =⇒ 𝐹𝐴 =⇒ 𝐺 =⇒ ∅,

where 𝐹𝐴 is the set of admissible words of the free language, that is, the set of all words over the alphabet 𝐴, and
∅ denotes the empty set.

Problem 20. 10 boys and 10 girls are sitting in a line so that boys’ neighbors are girls and vice versa; their teacher
is sitting next to them. Each of the children has some bonbons, and the total number of the boys’ bonbons is equal
to the total number of the girls’ ones. The first boy gives all his bonbons to the girl sitting next to him. The girl eats
all these bonbons, then she eats the same number of her own bonbons, and then she gives the rest of her bonbons
to the next boy. He does the same (eats and gives the rest of bonbons to the next girl), then the next girl does the
same, and so on. The last girl gives the rest of her bonbons to the teacher. How many bonbons does the teacher
get?

Problem 21. Let
∅ =⇒ 𝑀1 =⇒ 𝑀2 =⇒ . . . =⇒ 𝑀𝑛 =⇒ ∅

be an exact sequence of transformations.
) Prove that if each set 𝑀𝑖 consists of a finite number 𝑚𝑖 of words, then

𝑚1 + 𝑚3 + 𝑚5 + · · · = 𝑚2 + 𝑚4 + . . .

b) Prove the following formula for the dimension series:

𝑀1(𝑥) + 𝑀3(𝑥) + 𝑀5(𝑥) + · · · = 𝑀2(𝑥) + 𝑀4(𝑥) + . . .

Definition 8. A set 𝑀 of words is called free if no word in 𝑀 is a subword of another word in 𝑀 , all words in 𝑀
are free, and the words in 𝑀 have no overlaps with each other.

Problem 22. Let 𝐿 be a language over an alphabet 𝐴, and let the set 𝐵 of forbidden words of 𝐿 be free. Denote the
set of all admissible words by 𝐺 and the set of all nonempty admissible words by 𝐺. Construct an exact sequence
of transformations

∅ =⇒ 𝐵 ·𝐺 =⇒ 𝐴 ·𝐺 =⇒ 𝐺 =⇒ ∅.
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Problem 23. Let 𝐿 be a language over an alphabet 𝐴 of 𝑁 letters, and let the set 𝐵 of forbidden words of 𝐿 be
free. Prove the formula

𝐿(𝑥) =
1

1−𝑁𝑥 + 𝐵(𝑥)
.

Problem 24. Prove that the set of magic spells in Problem 1 is free, and solve the problem.

Problem 25. Find 𝐿(𝑥) provided that the alphabet of the language 𝐿 is Latin and the forbidden words are veni,
vidi, vici.

Definition 9. Let 𝐿 be a language. A simple linkage is a word 𝑣 = 𝑠𝑡𝑟, where 𝑠, 𝑡, 𝑟 are nonempty words such
that the words 𝑔 = 𝑠𝑡 and 𝑓 = 𝑡𝑟 are forbidden and there are no other forbidden subwords in 𝑣. The end 𝑟 of the
simple linkage (which is produced by cutting off the first forbidden subword 𝑔) is called the tail of 𝑣.

Problem 26. Prove that the set of forbidden words of a language is free if and only if there are no simple linkages
in it.

Problem 27. Let 𝐿 be a language over an alphabet 𝐴, let 𝐵 be its set of forbidden words, and let 𝑆 be the set of
all simple linkages. Denote the set of all admissible words by 𝐺 and the set of all nonempty admissible words by 𝐺.
Construct an exact sequence of transformations

𝑆 ·𝐺 =⇒ 𝐵 ·𝐺 =⇒ 𝐴 ·𝐺 =⇒ 𝐺 =⇒ ∅.

Problem 28. Find the conditions on the set of forbidden words of a language 𝐿 under which the exact sequence
from Problem 27 could be extended to an exact sequence

∅ =⇒ 𝑆 ·𝐺 =⇒ 𝐵 ·𝐺 =⇒ 𝐴 ·𝐺 =⇒ 𝐺 =⇒ ∅

(such languages are called non-tangled). Give a formula to express the dimension series 𝐿(𝑧) of a non-tangled
language in terms of the number 𝑁 of letters and the dimension series of the sets 𝐵 and 𝑆.

Problem 29. Find the dimension series of the language over the alphabet {𝑎, 𝑏, 𝑐} with forbidden words 𝑎𝑏𝑏, 𝑏𝑏𝑐, 𝑏𝑎𝑐.

Problem 30. Find the dimension series of the language over the alphabet 𝐴 = {𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑧1, . . . , 𝑧𝑛},
if the forbidden words are the words of the form 𝑥𝑖𝑦𝑗 and 𝑦𝑗𝑧𝑘, where 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛.

Problem 31. Prove that if the set of forbidden words of a non-tangled language consists of a single word, then
this set is free.

6 Free sets revisited

Problem 32. Construct an infinite free set over an alphabet of two letters.

Problem 33. Suppose that the set of forbidden words 𝐵 of a language 𝐿 is free and the alphabet has more than
one letter. Prove that the set of admissible words of the language is infinite.

Definition 10. Let 𝑆 = 𝑠0 +𝑠1𝑥+𝑠2𝑥
2 + . . . and 𝑅 = 𝑟0 +𝑟1𝑥+𝑟2𝑥

2 + . . . be two series. If the inequality 𝑠𝑘 ≥ 𝑟𝑘

holds for any 𝑘, then we say that the following inequality for the series holds:

𝑆 ≥ 𝑅.

Problem 34. Prove that if series 𝑃 , 𝑄, and 𝑅 satisfy the inequalities

𝑃 ≥ 𝑄 and 𝑅 ≥ 0,

then
𝑃𝑅 ≥ 𝑄𝑅.

Problem 35. Suppose that for every 𝑑 > 0 the sets 𝐵 and 𝐵′ of forbidden words of the languages 𝐿 and 𝐿′ over
the same alphabet 𝐴 contain the same number of words of length 𝑑, so that 𝐵(𝑧) = 𝐵′(𝑧). Prove that if the set 𝐵
is free, then the inequality

𝐿′(𝑧) ≥ 𝐿(𝑧)

holds; in addition, we have 𝐿′(𝑧) = 𝐿(𝑧) if and only if the set 𝐵′ is also free.

Problem 36. Suppose that the alphabet consists of two letters and the set 𝐵 contains at least two words, including
a word 𝑤 of length 2.

a) Prove that the set 𝐵 is not free.
b) Is it possible that 𝐵 is free if 𝑤 is of length 3?

4



Problem 37. Suppose that an alphabet consists of 𝑛 letters and 𝐵 consists of 𝑔 two-letter words. Prove that if
𝑔 ≤ 𝑛2/4, then the set 𝐵 may be chosen to be free.

Problem 38. Prove that if 𝑛 = 𝑘𝑑 and 𝑚 ≤ 𝑘𝑑(𝑑− 1)𝑑−1, where the numbers 𝑑, 𝑘, 𝑚, 𝑛 are positive integers, then,
over an alphabet of 𝑛 letters, one can choose a free set consisting of 𝑚 words of length 𝑑.

Problem 39. ) Prove that, if 𝐵 is a free set over an alphabet of 𝑛 letters, then there is the following inequality

1
1− 𝑛𝑥 + 𝐵(𝑥)

≥ 1.

b) Is the converse true, that is, is it true that if the inequality

1
1− 𝑛𝑥 + 𝑝(𝑥)

≥ 1

holds for a positive integer 𝑛 and a polynomial 𝑝(𝑥) whose coefficients are positive integers and whose constant
term is zero, then there exists a free set 𝐵 over an alphabet of 𝑛 letters, with 𝐵(𝑥) = 𝑝(𝑥)?

Problem 40. Let 𝑛 be a positive integer and let 𝑝(𝑥) be a polynomial with positive integer coefficients and zero
constant term. Prove that there exists a free set 𝐵 with dimension series 𝐵(𝑥) = 𝑝(𝑥) if and only if there exist two
polynomials 𝑓 and 𝑔 with nonnegative integer coefficients with 𝑓(0) = 𝑔(0) = 0 such that

(1− 𝑓)(1− 𝑔) ≥ 1− 𝑛𝑥 + 𝑝(𝑥).

Problem 41. 3 Find a condition describing possible dimension series of the sets of forbidden words for non-tangled
languages (like we described dimension series of free sets in problem 40).

7 Words and chains

Definition 11. Let 𝐿 be a language. Chains of length one are the forbidden words, and chains of length 2 are
the simple linkages. Next, one can define the chains of length 3, 4 etc. Namely, a word 𝑣 = 𝑠𝑡𝑟 (where all the
words 𝑠, 𝑡, 𝑟 are nonempty) is called a chain of length 𝑛 if its initial subword 𝑔 = 𝑠𝑡 is a chain of length 𝑛− 1, the
final subword 𝑓 = 𝑡𝑟 is a forbidden word, where 𝑡 is a subword of the tail 𝑝 of the chain 𝑔, and there are no other
forbidden subwords but 𝑓 in the final subword 𝑝𝑟. The tail of the chain 𝑣 is the word 𝑟.

A chain looks as follows (each arc denotes a forbidden subword in the chain):

� �� �� �� �� �� �� �
The length of the chain is the number of arcs. The only overlaps are of neighboring arcs (and the overlaps of

neighboring arcs are non-empty). The emphasized two final tails do not contain any forbidden subword but the
last arc.

For example, if the only forbidden word is 𝑎𝑏𝑎, then the only chain of length one is 𝑎𝑏𝑎, the only chain of length
two is 𝑎𝑏𝑎𝑏𝑎, the only one of length 3 is 𝑎𝑏𝑎𝑏𝑎𝑏𝑎, etc.

Problem 42. Suppose that the forbidden words in a language 𝐿 are the words “tournament”, “of”, “towns”. Write
up all chains of length 𝑛.

Problem 43. Antichains of length 𝑛 are defined in the same way as chains of length 𝑛, with the only difference
that we read words of 𝐿 in Definition 11 “from right to left”, i.e., the tail of an antichain is to the left, and the
initial antichain of length 𝑛 − 1 is to the right. Prove that the sets of length 𝑛 chains and length 𝑛 antichains
coincide.

Problem 44. Prove that a chain of length 𝑛 contains no other chain of length 𝑛 as a subword.

Problem 45. Prove that if a word is decomposed as 𝑤 = 𝑔𝑐, where 𝑔 is an admissible word and 𝑐 is a chain, then,
if in addition the length of 𝑐 is greater than 1, 𝑤 has exactly two decompositions of this form, and the lengths of
the chains in these decompositions differ by 1.

The next problem gives a way to solve the Main Problem.

Problem 46. Let 𝐿 be a language over an alphabet 𝐴. Let 𝐺 be the set of its admissible words and 𝐺 the set of
all nonempty admissible words. Let 𝐶1 be the set of chains of length one, 𝐶2 the set of chains of length 2, and so
on.

Prove that
𝐿(𝑥) =

1
1−𝑁𝑥 + 𝐶1(𝑥)− 𝐶2(𝑥) + 𝐶3(𝑥)− . . .

3Neither a solution nor even an answer to this problem are known to the Jury
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Problem 47. Find the dimension series for the language in Problem 42.

Problem 48. Find all possible answers to Problem 2 depending on the form of the breaking sequence.

Problem 49. We say that a subword 𝑐 of a word 𝑤 is its maximal subchain if 𝑤 can be decomposed as 𝑤 = 𝑔𝑐𝑢,
where 𝑔 is an admissible word and 𝑐 is a chain, and for any other decomposition 𝑤 = 𝑔𝑐′𝑢′ with another chain 𝑐′

the word 𝑐′ is always a subword of 𝑐. Prove that any non-admissible word has a single maximal subchain of odd
length.

Problem 50. Let 𝐿 be a language over an alphabet 𝐴, and let 𝐴′ be a new alphabet which extends 𝐴 by one
additional letter. Let 𝐿′ be a language over 𝐴′ with the same list of forbidden words as 𝐿. Prove that

𝐿′(𝑥) =
1

1
𝐿(𝑥)

− 𝑥
.

Problem 51. A language 𝑊 is called the free product of languages 𝐿 and 𝐿′ over disjoint alphabets 𝐴 and 𝐴′ if
the alphabet of 𝑊 is the union of the alphabets 𝐴 and 𝐴′ and the set of forbidden words is the union of the sets of
forbidden words of 𝐿 and 𝐿′. Express the dimension series of the free product 𝑊 in terms of the dimension series
of 𝐿 and 𝐿′.

Problem 52. Suppose that all forbidden words of a language 𝐿 are of two letters. Over the same alphabet, consider
another language 𝑀 whose forbidden words are all two-letter admissible words of 𝐿. Prove that

𝐿(𝑥)𝑀(−𝑥) = 1.
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8 Additional problems

Problem 53. Prove that there exists a free set of 𝑚 words of length 𝑑 over an alphabet of 𝑛 = 𝑘𝑑 letters if and
only if 𝑚 ≤ 𝑘𝑑(𝑑− 1)𝑑−1 (cf. Problem 38)

a) for 𝑑 = 2; b) for 𝑑 = 3; c) for 𝑑 > 3.

Definition 12. A language is said to be 𝑑-defined if the maximal length of its forbidden words is 𝑑. A 2-defined
language is said to be quadratic.

Problem 54. Quadratic languages 𝐿 and 𝑀 in Problem 52 are said to be dual to each other (notation: 𝑀 = 𝐿!).
a) Prove that (𝐿!)! = 𝐿.
b) Find (𝐿1 + 𝐿2)!.
c) Describe (𝐿1 · 𝐿2)!.

Problem 55. Let 𝐿 be a 𝑑-defined language. Let us define a new language 𝐿(𝑛) over the alphabet consisting of all
length 𝑛 admissible words of 𝐿 as the language whose admissible words are all admissible words of 𝐿 whose length
is a multiple of 𝑛 (rewritten in the new alphabet).

a) Prove that 𝐿(𝑛) is defined by finitely many forbidden words.
b) Is 𝐿(𝑛) always 𝑑-defined?
c) For what minimal 𝑛, the language 𝐿(𝑛) is necessarily either quadratic or free (for all 𝑑-defined languages 𝐿)?

Problem 56. For any quadratic language 𝐿 over the alphabet 𝑥1, . . . , 𝑥𝑛, let us define an oriented graph Γ𝐿 as
follows: it has 𝑛 vertices labelled with 𝑥1, . . . , 𝑥𝑛, and there is an edge (an arrow) 𝑥𝑖 → 𝑥𝑗 if and only if the word
𝑥𝑖𝑥𝑗 is admissible. Denote the number of admissible words of length 𝑘 by 𝑎𝑘. Prove that

a) the language 𝐿 is finite if and only if Γ𝐿 has no cycles;
b) the language 𝐿 has polynomial growth (i. e., there exist two nonzero polynomials 𝑝, 𝑞 of the same degree 𝑑

with positive leading coefficient such that 𝑝(𝑘) ≥ 𝑎𝑘 ≥ 𝑞(𝑘) for each 𝑘 ≥ 0) if and only if Γ𝐿 has a cycle but has no
intersecting cycles;

c) the language 𝐿 has exponential growth (i. e., for some 𝑐1 > 𝑐2 > 1 and for all 𝑘, we have 𝑐𝑘
1 ≥ 𝑎𝑘 ≥ 𝑐𝑘

2) if
and only if Γ𝐿 has at least two intersecting cycles.

Problem 57. Let 𝐿 and 𝐿! be a pair of dual quadratic languages. Is it possible that both have exponential growth?

Problem 58. For any 𝑑-defined language 𝐿 over the alphabet 𝑥1, . . . , 𝑥𝑛, we define the oriented graph Γ𝐿 as
follows: its vertices are labelled with all admissible words of length 𝑑 − 1, and there is an edge (arrow) 𝑣 → 𝑤 if
and only if there is a letter 𝑥𝑖 such that the word 𝑣𝑥𝑖 is admissible and the last 𝑑 − 1 letters of it constitute the
word 𝑤. Prove all properties a), b), c) in Problem 56 for Γ𝐿.

Definition 13. Let 𝑀 be a set over an alphabet 𝐴. Words 𝑢 and 𝑣 (over the same alphabet) are said to be
𝑀 -equivalent if, for any word 𝑤, the words 𝑢𝑤 and 𝑣𝑤 either both belong to 𝑀 or neither of them belongs to 𝑀 .
The set 𝑀 is said to be regular if there is a natural number 𝑛 such that any set of 𝑛 contains two 𝑀 -equivalent
words.

Problem 59. Prove that the set of admissible words of any language is regular.

Definition 14. A finite automaton over an alphabet 𝐴 is an oriented graph Γ with a finite set of vertices 𝑉 such
that
a) the arrows are marked by the letters of the alphabet 𝐴, and for every vertex 𝑣 ∈ 𝑉 and each letter 𝑎 ∈ 𝐴, there
is a unique arrow marked by 𝑎 whose tail is 𝑣;
b) an initial vertex 𝑣0 ∈ 𝑉 and a set of approving vertices 𝑊 ⊆ 𝑉 are given.

Let us consider each word over the alphabet 𝐴 as an instruction for a trip by arrows over the finite automaton
(Γ, 𝑣0, 𝑊 ), that is, we begin with the initial vertex, then go by the arrow marked by the first letter of the word,
then follow the arrow marked by the second letter of the word, and so on. We say that the automaton approves a
word if the path corresponding to the word ends with an approving vertex.

Problem 60. a) Prove that for every regular set 𝑀 there exists a finite automaton approving the words of 𝑀 and
no other words.

b) Prove that for every finite automaton the set of approving words is regular.

Problem 61. Prove that for every regular set 𝑀 its dimension series can we represented as a quotient of two
polynomials.

Problem 62. Let 𝐿 be a language and 𝑀𝑤 the set of all admissible words of 𝐿 which have a final subword equal to
a given word 𝑤. Prove that the dimension series of the set 𝑀𝑤 can we represented as a quotient of two polynomials.

Note. Parts 1–5 were suggested before the intermediate consideration of the problems. Parts 6–8 were added
after the intermediate consideration of the problems.
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