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Solutions

1 Main problem

1. Cf. Problem 24.

2. Cf. Problems 18 and 48.

3. One version of the solution is given in problem 46; another version can be obtained using Problems 59 and 61.

4. In Problem 1, the alphabet 𝐴 consists of 𝑁 = 100 words of the tribe language. The phrases of the tribe language
play the role of words of 𝐿, and the forbidden words of 𝐿 are the two magic spells. In Problem 2, the alphabet 𝐴
consists of 𝑁 = 256 commands of the computer, and the programs play the role of words of 𝐿.The only forbidden
word is the program of 4 commands that breaks the computer.

2 How to write down the answer?

5. To get an arbitrary word of 𝑚 letters, one choose any of 𝑁 letters in any of 𝑚 places. Multiplying the numbers
of possibilities in each place, we get 𝑁𝑚 words.

6. If the first letter of an admissible word is 𝑥, then the second one is 𝑥 as well. It follows that each admissible
word has the form 𝑥𝑥 . . . 𝑥, where 𝑥 is one of the 𝑁 letters. Therefore, the number of admissible words of any given
number of letters is 𝑁 .

7. Assume that the first letter of an admissible word is 𝑎. Since 𝑎𝑎 is a forbidden word, then the second letter
is 𝑏. Proceeding by the same way, we get 𝑎 on the odd places and 𝑏 on the even places. Similarly, if the first
letter is 𝑏, then we get 𝑎 on even places and 𝑏 one odd ones. Thus, the dimension series of this language is
1 + 2𝑥 + 2𝑥2 + 2𝑥3 + . . .

3 The arithmetics of languages

8. The collection of forbidden words is the following: all forbidden words of the both languages and all words of 2
letters such that the first letter is of the first alphabet and the second one is of the the second alphabet. Obviously,
the admissible word of each language do not contain a subword which is forbidden in the sum of languages. Let 𝑤
be a word of sum which does not contain subwords equal to the words described above. If its first letter is, say, in
the first alphabet, then the subsequent letters are in the first alphabet as well, that is, each such a word consists
of the letters of the same alphabet. It follows that 𝑤 is admissible in the language of this alphabet, thus, it is
admissible in the sum.

9. The initial terms of the series 𝐿(𝑥) and 𝐿1(𝑥) + 𝐿2(𝑥)− 1 are equal to 1. For 𝑛 > 0, the coefficient of 𝑥𝑛 in the
series 𝐿1(𝑥) + 𝐿2(𝑥)− 1 is equal to the sum of the numbers of words of 𝑛 letters in the languages 𝐿1 and 𝐿2, that
is, the number of words of 𝑛 letters in the language 𝐿, which is equal to the coefficient of 𝑥𝑛 in the series 𝐿(𝑥).

10. We have

(1− 𝑥)(1 + 𝑥 + 𝑥2 + 𝑥3 + . . . ) = 1− 𝑥 + (1− 𝑥) · 𝑥 + (1− 𝑥) · 𝑥2 + (1− 𝑥) · 𝑥3 + · · · =

= 1− 𝑥 + 𝑥− 𝑥2 + 𝑥2 − 𝑥3 + 𝑥3 − 𝑥4 + · · · = 1,
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as required.

11. The collection of forbidden words is the following: all forbidden words of two given languages and words of two
letters such that their first letter is in the second alphabet and the second one is in the first alphabet. Consider
an admissible word 𝑤 of the product. In 𝑤, the letters of the second alphabet follow to the letters of the first one,
therefore, 𝑤 has the from 𝑤1𝑤2, where 𝑤1 is a word of the first language and 𝑤2 is a word of the second one. The
word 𝑤1𝑤2 do not contain subwords which are forbidden in the languages-multipliers, therefore, 𝑤1 and 𝑤2 are
admissible in their languages, that is, the word 𝑤1𝑤2 is admissible in the product of the languages.

12. The coefficient of 𝑥𝑘 in the series 𝐿1(𝑥) · 𝐿2(𝑥) = 𝐿1(𝑥) · 𝑛0 + 𝐿1(𝑥) · 𝑛1𝑥 + · · · = (𝑛0 ·𝑚0 + 𝑛0𝑚1𝑥 + . . . ) +
(𝑛1𝑚0𝑥+𝑛1𝑚1𝑥

2 + . . . )+ . . . is 𝑛0𝑚𝑘 +𝑛1𝑚𝑘−1 + · · ·+𝑛𝑘𝑚0. The number of words of length 𝑘 in the set of words
𝐿1 ·𝐿2 is equal to the number of possibilities to get a pair of words, 𝑚 in 𝐿1 and 𝑛 in 𝐿2, such that the total number
of letters in these words is 𝑘. If the word 𝑚 is of 𝑖 letters, then the word 𝑛 is of 𝑘−𝑖 letters, so that the number of
such pairs is equal to 𝑚𝑖 ·𝑛𝑘−𝑖. Taking a sum of all such products for all 𝑖, one gets 𝑛0𝑚𝑘 + 𝑛1𝑚𝑘−1 + · · ·+ 𝑛𝑘𝑚0.
Thus, the coefficients of 𝑥𝑘 in two series 𝐿1(𝑥) · 𝐿2(𝑥) and 𝐿1 · 𝐿2(𝑥) coincide, therefore, the series itself coincide.

13. a) First let us show that the standard properties of addition and multiplication of polynomials (associativity,
commutativity, distributivity) hold for series as well. For example, consider associativity relation for multiplication
(𝑃 ·𝑄) · 𝑅 = 𝑃 · (𝑄 · 𝑅). To compute the coefficient of 𝑥𝑘 in the both sides of this relation, it is enough to make
computations for the same series without terms of degree higher than 𝑘, i. e., for polynomials. Therefore, the
relation for series follows from the same relation for polynomials. The other relations are proved in the same way.

Now note that, since the series 𝑆 starts with 𝑥1, the series 𝑅 · 𝑆𝑚
has no terms of degree less than 𝑚. That is

why infinite sums of the form 𝑅−𝑅 · 𝑆 + 𝑅 · 𝑆2 −𝑅 · 𝑆3
+ . . . make sense: to find the 𝑘th coefficient, the sum can

be replaced by a finite one. For the same reason, the sums of this type satisfy the distributivity relation

𝑅 · (𝑆1 + 𝑆2 + 𝑆3 + . . . ) = 𝑅 · 𝑆1 + 𝑅 · 𝑆2 + 𝑅 · 𝑆3 + . . . .

Having this in mind, we easily get

(1 + 𝑆)(1− 𝑆 + 𝑆
2 − 𝑆

3
+ . . . ) = 1.

Hence

𝑆 · 𝑅

𝑆
= 𝑆 · (𝑅−𝑅 · 𝑆 + 𝑅 · 𝑆2 −𝑅 · 𝑆3

+ . . . ) = 𝑆 ·𝑅 · (1− 𝑆 + 𝑆
2 − 𝑆

3
+ . . . ) =

= 𝑅 · (1 + 𝑆)(1− 𝑆 + 𝑆
2 − 𝑆

3
+ . . . ) = 𝑅.

b) By the above, we have

𝑆 · (𝑇 − 𝑅

𝑆
) = 𝑆 · 𝑇 − 𝑆 · 𝑅

𝑆
= 𝑅−𝑅 = 0

Assume that the series (𝑇 − 𝑅
𝑆 ) is nonzero. Since 𝑆 starts with 1, the first nonzero coefficient of (𝑇 − 𝑅

𝑆 ) is
equal to the first nonzero coefficient of 𝑆 · (𝑇 − 𝑅

𝑆 ). Therefore 𝑇 − 𝑅
𝑆 = 0 and 𝑇 = 𝑅

𝑆 .

14. a) Similarly to Problem 10, we obtain

𝐹𝐴(𝑥) = 1 + 𝑁𝑥 + 𝑁2𝑥2 + · · · =
1

1−𝑁𝑥
.

b) We have

1 + 𝑁𝑥 + 𝑁𝑥2 + 𝑁𝑥3 + · · · = −𝑁 + 1 + 𝑁 · (1 + 𝑥 + 𝑥2 + 𝑥3 + . . . ) = −𝑁 + 1 +
𝑁

1− 𝑥
=

1 + (𝑁 − 1)𝑥
1− 𝑥

and
1 + 2𝑥 + 2𝑥2 + 2𝑥3 + · · · = 1 + 2𝑥 · (1 + 𝑥 + 𝑥2 + 𝑥3 + . . . ) = 1 +

2𝑥

1− 𝑥
=

1 + 𝑥

1− 𝑥
.

15. The solution follows from Problems 59 and 61.
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4 Free word

16. It follows from Problem 17 below that

𝐿(𝑥) =
1

1− 26𝑥 + 𝑥5
.

Also, one can directly obtain the above formula in a similar way as in the solution of Problem 17.

17. Let 𝑎𝑘 be the number of admissible words of length 𝑘. Clearly, 𝑎0 = 1. Let us prove the recurrent relation
𝑎𝑘 = 𝑁𝑎𝑘−1 − 𝑎𝑘−𝑚 for 𝑘 > 0 (we have 𝑎𝑖 = 0 for 𝑖 < 0, since there are no words of negative length).

Indeed, by adding each letter of the alphabet to the beginning of each admissible word of length 𝑘 − 1, we
obtain 𝑁𝑎𝑘−1 words, among which are all admissible words of length 𝑘. Let us find which non-admissible words
of length 𝑘 can be obtained in this way, i. e., can be written as 𝑐𝑔, where 𝑐 is a letter and 𝑔 is an admissible
word of length 𝑘 − 1. Clearly, the forbidden subword must stand at the beginning, so 𝑐𝑔 = 𝑤𝑓 , where 𝑤 is the
forbidden word and 𝑓 is admissible. Since 𝑤 is free, we conclude that, for any admissible word 𝑓 , the word obtained
from 𝑤𝑓 by cutting its first letter is admissible (otherwise 𝑤 would have an overlap with itself). Therefore, the
set of all words of the form 𝑐𝑔, where 𝑐 is a letter and 𝑔 is an admissible word of length 𝑘 − 1, is the union of two
non-intersecting sets: the set of all admissible words of length 𝑘 and the set of all words of the form 𝑤𝑓 , where 𝑓
is an admissible word of length 𝑘 −𝑚. Hence we get the recurrent relation.

Consider the sum of relation 𝑎0 = 1 and all relations 𝑎𝑘𝑥𝑘 = 𝑁𝑎𝑘−1𝑥
𝑘 − 𝑎𝑘−𝑚𝑥𝑘 for 𝑘 = 1, 2, 3, . . . . We obtain

𝐿(𝑥) = 1 + 𝑁𝑥𝐿(𝑥)− 𝑥𝑚𝐿(𝑥).

Solving this equation with respect to 𝐿(𝑥), we get the required formula.

18. According to Problem 17,

𝐿(𝑥) =
1

1− 256𝑥 + 𝑥4
= 1 + (256𝑥− 𝑥4) + (256𝑥− 𝑥4)2 + (256𝑥− 𝑥4)3 + . . .

Here the coefficient of 𝑥7 is 2567 − 4 · 2563. Thus, the probability of computer break is 4·2563

2567 = 4 · 256−4, or,
approximately, 10−10.

5 Transformations of words

19. The first arrow is determined uniquely; the second one maps each word in 𝑁 to the same word regarded as an
element of 𝐹𝐴; the third one maps each of the remaining words in 𝐹𝐴 to the same word as an element of 𝐺; the
last arrow is as trivial as the first one.

20. Each of the children eats as many bonbons that belonged to boys as bonbons that belonged to girls. The last
girl eats the last bonbons that belonged to boys. Thus she also eats the last bonbons that belonged to girls, and
the teacher gets nothing at all.

21. a) Let 𝑀odd = 𝑀1 ∪ 𝑀3 ∪ 𝑀5 ∪ . . . and 𝑀even = 𝑀2 ∪ 𝑀4 ∪ 𝑀4 ∪ . . . . Each transformation establishes
a one-to-one correspondence between a subset of 𝑀odd and a subset of 𝑀even, besides, since both the rightmost
and the leftmost sets are empty, each element participates in exactly one of these correspondences. Hence the sets
𝑀odd and 𝑀even have the same number of elements.
b) For each 𝑘, the set 𝑀

(𝑘)
𝑖 of words in 𝑀𝑖 of length 𝑘 is finite; by applying assertion a) to the finite sets 𝑀

(𝑘)
𝑖

with the same 𝑘, we conclude that the coefficient of 𝑥𝑘 in the left-hand side of the formula is the same as in its
right-hand side. Since 𝑘 is arbitrary, it means that the formula is correct.

22. Let us verify that the set 𝐴 · 𝐺 is the union of two non-intersecting sets: the set 𝐺 and the set 𝐵 · 𝐺. The
proof, which is based on the fact that the set 𝐵 is free, is almost literally the same as the corresponding reasoning
in the solution of Problem 17.

Now it is easy to construct the required exact sequence: the first and the last arrows are trivial, the second
one maps each element of 𝐵 · 𝐺 to itself (here we use that 𝐵 · 𝐺 ⊆ 𝐴 · 𝐺), and the third one maps each of the
remaining elements of 𝐴 ·𝐺 to itself (here we use that 𝐴 ·𝐺 ∖ 𝐵 ·𝐺 = 𝐺). In particular, the kernel of the second
transformation is empty, and the kernel of the third transformation, which is the same as the image of the second
one, is 𝐷 ·𝐺; the image of the third transformation is 𝐺.
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23. By Problem 21b), the exact sequence in Problem 22 implies

(𝐵 ·𝐺)(𝑥) + 𝐺(𝑥) = (𝐴 ·𝐺)(𝑥).

Note that each element of 𝐴 ·𝐺 can be uniquely written as 𝑎𝑔, where 𝑎 ∈ 𝐴, 𝑔 ∈ 𝐺. Hence (𝐴 ·𝐺)(𝑥) = 𝐴(𝑥)𝐺(𝑥).
Further, each element of 𝐵 · 𝐺 can be uniquely written as 𝑏𝑔, where 𝑏 ∈ 𝐵, 𝑔 ∈ 𝐺, (since no forbidden word
is a subword of another forbidden word). Hence (𝐵 · 𝐺)(𝑥) = 𝐵(𝑥)𝐺(𝑥). We have 𝐴(𝑥) = 𝑁𝑥, 𝐺(𝑥) = 𝐿(𝑥),
𝐺(𝑥) = 𝐺(𝑥)− 1 = 𝐿(𝑥)− 1. Therefore,

𝐵(𝑥)𝐿(𝑥) + 𝐿(𝑥)− 1 = 𝑁𝑥𝐿(𝑥).

Solving this equation with respect to 𝐿(𝑥), we get the required formula.

24. Denote the words that occur in the spells by letters: “earth” — A, “stand” — B, “on” — C, “great” —
D, “crocodile” — E, “every” — F, “evening” — G, “swallow” — H, “sun” — I. Then the spells correspond to
forbidden words “ABCDE” and “FGEHI”. These words are free (since all letters in each of them are distinct) and
have no overlaps with each other (since both the first and the last letters of the second word do not occur in the
first one). Therefore, the set of spells is free, and and the dimension series for the language is

𝐿(𝑥) =
1

1− 100𝑥 + 2𝑥5 .

Using this formula, it is not hard to show (see the solution of Problem 17), that 𝑎𝑘 (the number of sentences of 𝑘
words) can be computed from the initial condition 𝑎0 = 1 and the recurrent relation 𝑎𝑘 = 100𝑎𝑘−1 − 2𝑎𝑘−5. The
computations provide us with the answer 𝑎20 = 1040 − 32 · 1030 + 264 · 1020 − 448 · 1010 + 16.

25. Letter 𝑣 occurs only as the first letter of each forbidden word and all forbidden words are of length 4. Hence
the set of forbidden words is free. By Problem 23, we have

𝐿(𝑥) =
1

1− 26𝑥 + 3𝑥4
.

26. If the set of forbidden words is free, then, in particular, there are no simple linkages. Let us prove that if there
are no simple linkages, then the set of forbidden words is free. Assume the contrary, i. e., that the set of forbidden
words is not free. Then there is an overlap of two forbidden words, that is, there exist three nonempty words 𝑠, 𝑡,
𝑟 such that the words 𝑠𝑡 and 𝑡𝑟 are forbidden. Choose such a triple (𝑠, 𝑡, 𝑟) so that the length of 𝑠𝑡𝑟 be minimal. If
it is not a simple linkage, then 𝑠𝑡𝑟 has a forbidden subword 𝑤 other than 𝑠𝑡 and 𝑡𝑟. Note that the end of 𝑤 is not
he end of 𝑡𝑟 since otherwise either 𝑤 would be a subword of 𝑡𝑟 or 𝑡𝑟 would be a subword of 𝑤, which is impossible
as no forbidden word is a subword of another forbidden word. Similarly, the beginning of 𝑤 is not the beginning
of 𝑠𝑡. For the same reason, the subword 𝑤 overlaps with both 𝑠 and 𝑟. Denote the common part of 𝑠𝑡 and 𝑤 by 𝑡′,
the remaining part of 𝑠𝑡 by 𝑠′, and the remaining part of 𝑤 by 𝑟′. These words are nonempty, the length of 𝑠′𝑡′𝑟′

is less than the length of 𝑠𝑡𝑟, the words 𝑠′𝑡′ = 𝑠𝑡 and 𝑡′𝑟′ = 𝑤 are forbidden. We obtain a contradiction. Thus, if
there are no simple linkages, the set of forbidden words is free.

27. We construct the transformations starting from the end (from the rightmost arrow). Since the last set is
empty, the domain of definition of the last transformation is also empty. Hence the image of the last but one
transformation is the whole set 𝐺. Since 𝐺 ⊆ 𝐴 ·𝐺, we can take 𝐺 to be the domain of definition of the last but
one transformation, and define the corresponding function to map each element 𝑔 ∈ 𝐺 to itself. The kernel of this
transformation consists of all non-admissible words of the form 𝑎𝑔, where 𝑎 is a letter and 𝑔 is an admissible word.
It is readily seen that, for any word of this type, there exist a forbidden word 𝑤 and an admissible word 𝑓 such
that 𝑎𝑔 = 𝑤𝑓 (we already used similar reasoning in the solutions of Problems 17 and 22). So we can construct
the third arrow from the right (this transformation also maps each element of its domain to itself). Consider the
kernel of this transformation. It consists of those words of the form 𝑤𝑓 , where 𝑤 is forbidden and 𝑓 is admissible,
which also have the form 𝑎𝑣, where 𝑎 is a letter and 𝑣 is a non-admissible word. Choose the leftmost forbidden
subword 𝑢 in 𝑣. Clearly, the subword 𝑢 of the word 𝑎𝑣 = 𝑤𝑓 overlaps with the subword 𝑤 and forms a simple
linkage with it. Thus the kernel of the third arrow from the right is contained in 𝑆 · 𝐺. Hence it is possible to
construct transformation 𝑆 ·𝐺 =⇒ 𝐵 ·𝐺 (which also maps each element of its domain to itself).

28. By the solution of the previous problem, we see that a language is non-tangled if and only if all words of
the form 𝑟𝑔, where 𝑟 is the tail of a simple linkage and 𝑔 is an admissible word, are admissible. An equivalent
condition for the set of forbidden words writes as follows: there exist no such words 𝑝, 𝑞, 𝑟, 𝑠, 𝑡, where the 𝑝, 𝑞, 𝑠, 𝑡
are nonempty, the words 𝑝𝑞, 𝑞𝑟𝑠, 𝑠𝑡 are forbidden, and 𝑝𝑞𝑟𝑠 is a simple linkage.

Note that any element of the set 𝑆 · 𝐺 can be uniquely represented as the product of a simple linkage by an
admissible word (it follows easily from the definition of simple linkage and the fact that no forbidden word is a
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subword of another forbidden word). In the same way as in the solution of Problem 23, for a non-tangled language
𝐿, we use the exact sequence to obtain the following equation:

𝑆(𝑥)𝐿(𝑥) + 𝑁𝑥𝐿(𝑥) = 𝐵(𝑥)𝐿(𝑥) + 𝐿(𝑥)− 1,

whence follows the required formula

𝐿(𝑥) =
1

1−𝑁𝑥 + 𝐵(𝑥)− 𝑆(𝑥)
.

29. Simple linkages are 𝑎𝑏𝑏𝑐 and 𝑎𝑏𝑏𝑎𝑐, and their tails are 𝑐 and 𝑎𝑐. It is clear that none of these tails ends with
the beginning of a forbidden word. Thus the language is non-tangled. Therefore, the dimension series is

𝐿(𝑥) =
1

1− 3𝑥 + 3𝑥3 − 𝑥4 − 𝑥5
.

30. Simple linkages are 𝑥𝑖𝑦𝑗𝑧𝑘, where 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛, their tails are 𝑧𝑘. Since no forbidden word starts with 𝑧𝑘,
the language is non-tangled. Therefore, the dimension series is

𝐿(𝑥) =
1

1− 3𝑛𝑥 + 2𝑛2𝑥2 − 𝑛3𝑥3
.

31. Let 𝑤 be the unique forbidden word and let 𝐿 be its length. Suppose that 𝑤 is not free; let 𝑝𝑞𝑟, where
𝑝𝑞 = 𝑞𝑟 = 𝑤, is a simple linkage. We have 𝑤𝑟 = 𝑝𝑞𝑟 = 𝑝𝑤. Therefore, the last subword of length 𝐿 in each
of the words 𝑤𝑟 = 𝑝𝑤, 𝑤𝑟𝑟 = 𝑝𝑤𝑟 = 𝑝𝑝𝑤, 𝑤𝑟𝑟𝑟 = 𝑝𝑝𝑤𝑟 = 𝑝𝑝𝑝𝑤, . . . is equal to 𝑤. Take the first word in this
sequence which has length at least 2𝐿. Then a word of the from 𝑟𝑟𝑟 . . . 𝑟 has the final subword equal to 𝑤. But
this means that the word 𝑟 has a nonempty ending which is an initial subword of 𝑤. Therefore, the language under
consideration is tangled (Cf. the solution of Problem 28).

6 Free sets revisited

32. For example, if the alphabet consists of the letters 𝑎 and 𝑏, then the set of words 𝑎𝑛𝑏𝑛𝑎𝑏, where 𝑛 ≥ 2, is
free. Let us prove this. Obviously, no two words are subwords of each other. It remains to prove that there is no
nontrivial overlap (i. e., each overlap is the letter-by-letter application of a word on itself). Let 𝑤 is an overlap
of the words 𝑎𝑛𝑏𝑛𝑎𝑏 and 𝑎𝑚𝑏𝑚𝑎𝑏. Then it is easy to see that 𝑤 has at least three letters. Since 𝑤 is an end of
the word 𝑎𝑛𝑏𝑛𝑎𝑏, it has the form either 𝑏𝑘𝑎𝑏 or 𝑎𝑘𝑏𝑛𝑎𝑏, where 1 ≤ 𝑘 ≤ 𝑛. Because 𝑤 is also a begin of the word
𝑎𝑚𝑏𝑚𝑎𝑏, we get 𝑘 = 𝑚 = 𝑛 and 𝑤 = 𝑎𝑛𝑏𝑛𝑎𝑏 = 𝑎𝑚𝑏𝑚𝑎𝑏 is a trivial overlap.

33. Lemma. Let 𝑝(𝑥) = 1 + 𝑝1𝑥 + 𝑝𝑛𝑥𝑛 be a polynomial of degree 𝑛 ≥ 1. Then the series 𝑓(𝑥) = 1/𝑝(𝑥) cannot
be a polynomial (i. e., this series has an infinite set of nonzero terms).

Proof of Lemma. Suppose (ad absurdum) that the series 𝑓(𝑥) is a polynomial, that is, 𝑓(𝑥) = 𝑓0+𝑓1𝑥+. . . 𝑓𝑚𝑥𝑚,
where the leading coefficient 𝑓𝑚 is nonzero. According to Problem 13 a), we have 1 = 𝑓(𝑥)𝑝(𝑥) = 1 + (𝑓0𝑝1 +
𝑓1𝑝0)𝑥 + · · ·+ 𝑓𝑚𝑝𝑛𝑥𝑚+𝑛, a contradiction.

Return to Problem 33. According to Problem 23, we have

𝐿(𝑥) =
1

1−𝑁𝑥 + 𝐵(𝑥)
.

If the language 𝐿 was finite, the series 𝐿(𝑥) would be a polynomial, in contradiction with the above Lemma. It
follows that the set of admissible words is infinite.

34. Obviously, for series 𝐴 and 𝐵 the inequality 𝐴 ≥ 𝐵 is equivalent to an inequality 𝐴 − 𝐵 ≥ 0, which is
equivalent to the condition that the coefficients of the series 𝐴 − 𝐵 are nonnegative. Denote the series 𝑃 −𝑄 by
𝐴 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 . . . , and the series 𝑅 by 𝑅 = 𝑟0 + 𝑟1𝑥 + 𝑟2𝑥
2 . . . Then an 𝑛-th coefficient of the series 𝐴𝑅 is

given by the formula 𝑎0𝑟𝑛 + 𝑎1𝑟𝑛−1 + · · · + 𝑎𝑛𝑟0. So, 𝑎𝑛 is a sum of nonnegative numbers, so that 𝑎𝑛 ≥ 0. This
means that it holds an inequality 𝐴𝑅 ≥ 0. Equivalently, we have 𝑃𝑅−𝑄𝑅 ≥ 0, or 𝑃𝑅 ≥ 𝑄𝑅.

35. According to Problem 23,

𝐿(𝑥) =
1

1−𝐴(𝑥) + 𝐵(𝑥)
.

By Problem 27, there is an exact sequence

∅ =⇒ 𝐾 =⇒ 𝐵′ ·𝐺′ =⇒ 𝐴 ·𝐺′ =⇒ 𝐺
′

=⇒ ∅,
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where 𝐾 is a kernel of the transformation 𝐵 · 𝐺 =⇒ 𝐴 · 𝐺′ and 𝐺′ is the set of admissible words of the language
𝐿′. It follows from this exact sequence (Problem 21) that

𝐵′(𝑥)𝐺′(𝑥)−𝐴(𝑥)𝐺′(𝑥) + 𝐺′(𝑥)− 1 = 𝐾(𝑥),

therefore (since 𝐵′(𝑥) = 𝐵(𝑥), 𝐿′(𝑥) = 𝐺′(𝑥) and 𝐾(𝑥) ≥ 0),

𝐿′(𝑥)(𝐵(𝑥)−𝐴(𝑥) + 1) ≥ 1.

Multiplying this by the series 𝐿(𝑥) ≥ 0, we get (using Problem 33)

𝐿′(𝑥)(𝐵(𝑥)−𝐴(𝑥) + 1) · 1
1−𝐴(𝑥) + 𝐵(𝑥)

≥ 𝐿(𝑥),

i. e.,
𝐿′(𝑥) ≥ 𝐿(𝑥).

36. Let 𝐴 = {𝑎, 𝑏} be the alphabet. Denote the second word by 𝑣. Obviously, if the words 𝑣 and 𝑤 are free, then
their initial and last letters differ. If, in addition, 𝑤 the initial letters of the two words differ, then the last letter
of 𝑣 coincides with the first one of 𝑤, and , so that the set 𝐵 is not free. So, it remains to consider the case when
𝑣 and 𝑤 begin with the same letter (say, 𝑎) and end with another one (𝑏).

a) We have 𝑤 = 𝑎𝑏 and 𝑣 = 𝑎...𝑏. Obviously, if the first appearing of 𝑏 in the word 𝑣 is in 𝑘-th place, then the
subword of 𝑣 which consists of the (𝑘 − 1)-th and 𝑘-th letters is 𝑤. It follows that 𝐵 is not free.

b) Answer: no. Let 𝑤 = 𝑎𝑎𝑏 (the case 𝑤 = 𝑎𝑏𝑏 is analogous, up to the right–left symmetry and the interchanging
the letters). Since the word 𝑤 is not a subword of 𝑣, in 𝑣 the letters that follows the pair of letters 𝑎𝑎 is again 𝑎.
Since the words 𝑣 and 𝑤 have overlaps, 𝑣 cannot begin with 𝑎𝑏, i. e., 𝑣 begins with 𝑎𝑎. Therefore, the 3rd letter of
𝑣 is 𝑎, as well as the 4th etc. It follows that 𝑣 = 𝑎𝑎 . . . 𝑎, a contradiction.

37. It is sufficient to show that there exist a free set 𝐵 of 𝑔 =
[︀
𝑛2/4

]︀
two-letter words. Let 𝑘 = [𝑛/2], i. e.,

𝑛 = 2𝑘 or 𝑛 = 2𝑘 + 1. Put 𝐵 = {𝑥𝑖𝑥𝑗 |1 ≤ 𝑖 ≤ 𝑘, 𝑘 + 1 ≤ 𝑗 ≤ 𝑛}. Obviously, the set 𝐵 is free. Then for
an even 𝑛 = 2𝑘, the set 𝐵 consists of 𝑘2 = 𝑛2/4 elements, and in the case of odd 𝑛 = 2𝑘 + 1 the set 𝐵 is of
𝑘(𝑘 + 1) = (𝑛− 1)(𝑛 + 1)/4 = 𝑛2/4− 1/4 =

[︀
𝑛2/4

]︀
elements, as required.

38. It is sufficient to show that there exist a free set 𝐵 of 𝑚 ≤ 𝑘𝑑(𝑑− 1)𝑑−1 words of length 𝑑. Let us divide the
alphabet 𝐴 = {𝑥1, . . . , 𝑥𝑛} by two subsets 𝑃 = {𝑥1, . . . , 𝑥𝑘} and 𝑄 = {𝑥𝑘+1, . . . , 𝑥𝑛}. Then is es easy to see that
the set 𝐵 = {𝑝𝑞|𝑝 ∈ 𝑃, 𝑞 ∈ 𝐹𝑄 — 𝑑− 1} is as needed.

39.
a) According to Problem 23, 1

1−𝑛𝑥+𝐵(𝑥) = 𝐿(𝑥) ≥ 1.

b) Answer: no. For example, over a 2-letters alphabet 𝐴 there is no such a set 𝐵 with 𝑝(𝑥) = 𝑥3 + 𝑥10 (it is shown
in Problem 36 b). It remains to see that the series

𝑓(𝑥) =
1

1− 2𝑥 + 𝑥3 + 𝑥10

has nonnegative coefficients (since the initial term of the above series is 1, the above condition is equivalent to
the required inequality 𝑓(𝑥) ≥ 1). We will show that the coefficients of the series satisfy the stronger inequality
𝑎𝑛 ≥ (3/2)𝑛. One can provide the proof of the last inequality by induction, using the reccurent relation 𝑎𝑛+10 =
2𝑎𝑛+9 − 𝑎𝑛+7 − 𝑎𝑛, which follows from the condition (1− 2𝑥 + 𝑥3 + 𝑥10)𝑓(𝑥) = 1.

Another similar example is the case 𝑝(𝑥) = 4𝑥6, again over the two-letter alphabet.

40. The proof is given in Theorem 5.1 (equivalence A⇐⇒B) and Proposition 5.6 in the paper: David Anick,
Generic algebras and CW–complexes, Proceedings of 1983 Conference on algebra, topology and K–theory in honor
of John Moore. Princeton University, 1988, p. 247–331.

41. The question is still open.

7 Words and chains

42. The word “of” has not any overlaps with the other words because no words begin with the letter f and do not
end with the letter o. There is no letter s in the word “tournament” so a chain can consist the word “towns” only
as the last arc. A letter t is only on the first and the last position in the word “tournament”. So overlaps of the
word “tournament” with itself are only “tournamentournament”.
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Now we find all chains: tournament, of, towns; tournamentournament, tournamentowns;... There are two chains
of the length 𝑛 for 𝑛 > 1.
43. From the arc on the right of a chain construct an antichain leftward arc by arc. We obtain a unique antichain
of the length 𝑖 if it exists. We prove by induction that the beginning of the 𝑖th arc of the antichain lies between
the beginning of the 𝑖th from the right (numeration of arcs is from the right) and the end of the (𝑖+1)th chain
arcs. The first arcs of chain and antichain coincide, therefore the base of induction holds for 𝑖 = 1. Now check the
induction statement for 𝑖 = 2. The second antichain arc is on the right from the second chain arc because there
are not forbidden words between the first and the second antichain arcs. The beginning of the second antichain
arc is on the left from the end of the third (from the right) chain arc because there is no forbidden words after the
end of the third chain arc by the definition of a chain. So the base holds for 𝑖 = 2. Then we prove the induction
step. Suppose the induction statement is true for 1,2,...,i. By the induction assumption the 𝑖th chain arc intersects
the (𝑖−1)th antichain arc, but the (𝑖+1)th antichain arc does not intersect the (𝑖−1)th antichain arc, therefore the
(𝑖+1)th antichain arc is on the left from the 𝑖th chain arc. Between the end of the (𝑖+2)th and the beginning of
the 𝑖th chain arcs no forbidden words begin, therefore the beginning of the (𝑖+1)th antichain arc is on the left from
the end of the (𝑖+2)th chain arc. The (𝑖−1)th antichain is not on the left from the (𝑖−1)th chain arc, so the (𝑖+1)
chain arc does not intersect the (𝑖−1)th antichain arc, but intersects the 𝑖th arc. Therefore the (𝑖+1)th antichain
arc is not on the left from the (𝑖+1)th chain arc. This finishes the proof.
44. Assume that a chain 𝑐′ is a subword of a chain 𝑐. Let us prove by induction that the 𝑖th 𝑐-arc is not on the
right from the 𝑖th 𝑐′-arc. The statement is obvious for 𝑖 = 1. If the first arcs of considered chains coincide and the
chains have the same length then their arcs coincide and so the whole chains are equal. Hence the chain 𝑐′ does
not start from the beginning of the word 𝑐. Between the first and the second 𝑐-arcs there is no forbidden words.
Therefore the first 𝑐′-arc is not on the left from the second 𝑐-arc and then the second 𝑐′-arc is on the right from
the second 𝑐-arc. So we proved the base for 𝑖 = 2. Now we prove an induction step. We consider two cases.

The first case. The (𝑖+1)th 𝑐′-arc does not intersect the 𝑖th 𝑐-arc. Then the (𝑖+1)th 𝑐′-arc is on the right from
the (𝑖+1)th 𝑐-arc.

The second case. The (𝑖+1)th 𝑐′-arc intersects the 𝑖th 𝑐-arc. The (𝑖+1)th 𝑐′-arc does not intersect the (𝑖−1)th 𝑐′-
arc, therefore by induction hypothesis the (𝑖+1)th does not intersect the (𝑖−1)th 𝑐-arc. Summarizing observations
we obtain that by definition of chain the (𝑖+1)th 𝑐-arc is not on the right from the (𝑖+1)th 𝑐′-arc.

The induction statement is proved and we must only consider the case when the last 𝑐- and 𝑐′- arcs coincide.
In this case we note that these chains as antichains (by the previous problem) have the same arcs on the right and
the same length. Therefore they coincide.
45. Assume that a word is decomposed as 𝑔𝑐 where 𝑔 is admissible word and 𝑐 is a chain of the length at least two.
By the problem 43 the chain 𝑐 is also an antichain. If you reduce the chain 𝑐 by the beginning of the first arc and
it will appear a forbidden word that is on the left from the reduced chain then the antichain 𝑐 can be continued to
the left and we obtain a new decomposition 𝑔′𝑐′ where the chain length is increased by one. If a forbidden word
does not appear then the antichain 𝑐 can be reduced by the beginning of the arc on the left and we obtain a new
decomposition 𝑔′′𝑐′′ where the chain length is decreased. If the third decomposition 𝑔′′𝑐′′ exists then note that the
arcs of the antichains 𝑐, 𝑐′, 𝑐′′ are the same so there are two chains among them which lengths differ at least by
two. But in this case the arc on the left of the longest antichain does not intersect the shortest antichain and we
have a contradiction.
46. We will apply the problem 21 for an exact sequence

. . . =⇒ 𝐶𝑛+1 ·𝐺 =⇒ 𝐶𝑛 ·𝐺 =⇒ 𝐶𝑛−1 ·𝐺 =⇒ . . . 𝐶1 ·𝐺 =⇒ 𝐴 ·𝐺 =⇒ �̄�

Let us construct this sequence. Choose a word 𝑐𝑔 from 𝐶𝑛 · 𝐺. Add a tail of the chain 𝑐 to the beginning of
the word 𝑔 and obtain a decomposition 𝑐′𝑔′. If 𝑔′ is an admissible word then the word 𝑐′𝑔′ belongs to 𝐶𝑛−1 ·𝐺. If
𝑔′ contains a forbidden word then the chain 𝑐 can be continued to the right to the chain 𝑐′′, the rest of the word
denote by 𝑔′′. Then the word 𝑐′′𝑔′′ belongs to 𝐶𝑛+1 · 𝐺. A chain can be continued in unique way in the word, so
the constructed maps are biunique on the parts of 𝐶𝑛 ·𝐺.

The arrows 𝐶1 ·𝐺 =⇒ 𝐴 ·𝐺 =⇒ �̄� =⇒ ∅ are the same as in the problem 27. By the problem 21,

1− 𝐿(𝑥)(1−𝑁𝑥 + 𝐶1(𝑥)− 𝐶2(𝑥) + 𝐶3(𝑥)− . . . ) = 0.

So we obtain the formula.
47. By the problem 42 𝐶1(𝑥) = 𝑥2 + 𝑥5 + 𝑥10, 𝐶𝑛(𝑥) = 𝑥9(𝑛−1)(𝑥5 + 𝑥10). By the formula from the problem 46

𝐿(𝑥) =
1

1− 26𝑥 + 𝑥2 + (𝑥5 + 𝑥10)(1− 𝑥9 + 𝑥18 − . . . )
=

1
1− 26𝑥 + 𝑥2 + 𝑥5+𝑥10

1+𝑥9

=

=
1 + 𝑥9

1− 26𝑥 + 𝑥2 + 𝑥5 + 𝑥9 − 25𝑥10 + 𝑥11

48. Consider four cases of a forbidden word of four letters.
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1) The forbidden word is of the form aaaa. In that case 𝐶2𝑛 = 𝑥4𝑛+1, 𝐶2𝑛−1 = 𝑥4𝑛. By the formula in the
problem 46

𝐿(𝑥) =
1

1− 256𝑥 + 𝑥4 − 𝑥5 + . . .
=

1
1− 256𝑥 + 𝑥4−𝑥5

1−𝑥4

=
1− 𝑥4

1− 256𝑥 + 255𝑥5
=

= (1− 𝑥4)(1 + (256𝑥− 255𝑥5) + (256𝑥− 255𝑥5)2 + . . . ).

Then a coefficient of 𝑥7 equals to 2567 − 3 · 2562 · 255− 2563 = 2567 − 4 · 2563 + 3 · 2562.
2) The forbidden word has the form abca and at least two distinct letters. In that case 𝐶𝑛 = 𝑥3𝑛+1.

𝐿(𝑥) =
1

1− 256𝑥 + 𝑥4 − 𝑥7 + . . .
= 1 + (256𝑥− 𝑥4 + 𝑥7 − . . . ) + (256𝑥− 𝑥4 + 𝑥7 − . . . )2 + . . .

A coefficient of 𝑥7 equals to 2567 − 4 · 2563 + 1
3) The forbidden word is of the form abab. In that case 𝐶𝑛 = 𝑥2(𝑛+1).

𝐿(𝑥) =
1

1− 256𝑥 + 𝑥4 − 𝑥6 + 𝑥8(. . . )

A coefficient of 𝑥7 equals to 2567 − 4 · 2563 + 2 · 256.
4) The forbidden word is free. This case was analyzed in the problem 18.

49. From the 46 it follows that

1
1−𝑁𝑥

− 𝐿(𝑥) = 𝐿(𝑥) · 𝐶1(𝑥) · 1
1−𝑁𝑥

− 𝐿(𝑥) · 𝐶2(𝑥) · 1
1−𝑁𝑥

+ 𝐿(𝑥) · 𝐶3(𝑥) · 1
1−𝑁𝑥

− . . .

The left part of this equality is a dimension series of the set of inadmissible words. The right part of this equality
is an alternative sum of dimension series of langugages 𝐿 · 𝐶𝑛 · 𝐹𝐴. One can define a map from these labguages
to the set of inadmissible words and vice versa, every inadmissible word can be decomposed as 𝑔𝑐𝑛𝑢, where 𝑔 is
admissible, 𝑐1 is a forbidden word. But one can decompose an inadmissible word as 𝑔𝑐𝑛𝑢 in several ways. Denote
the number of such decompositions of the word 𝑤 as 𝑤𝑛. So then the sum of the numbers (𝑤1−𝑤2 +𝑤3−𝑤4 + . . . )
for all inadmissible words of the length 𝑘 equals to a coefficient of 𝑥𝑘 in the right part of the equality behind – and
therefore in the left part, that is equal to the amount of inadmissible words of the length 𝑘.

Note that from the decomposition of the word 𝑤 as 𝑔𝑐𝑛𝑢 one can obtain another decomposition, in which the
chain length is decreased by one, by moving a tail of 𝑐𝑛 to 𝑢. So two these decompositions will be cancel in the
sum (𝑤1 − 𝑤2 + 𝑤3 − 𝑤4 + . . . ). In other words the sum (𝑤1 − 𝑤2 + 𝑤3 − 𝑤4 + . . . ) equals to the quantity of
decompositions of the word 𝑤 as 𝑔𝑐𝑢 where subword 𝑐 is a maximal chain of odd length.

Consider a decomposition of the word 𝑤 as 𝑔𝑐𝑢 where 𝑐 is a maximal chain with the most right 1arc. By the
problem 45 in the word 𝑔𝑐 there is a maximal chain of the length one or it can be decomposed as 𝑔′𝑐′ where 𝑔′ is
admissible and 𝑐′ is a chain which length differs by one from the length of the chain 𝑐. In both cases there is a
maximal chain of odd length in the word 𝑤. So we showed that (𝑤1 − 𝑤2 + 𝑤3 − 𝑤4 + . . . ) is at least one. But
the sum of such quantities for all inadmissible words equals to their number. So then every such quantity equals
to one and in every inadmssible word there is only one maximal chain of odd length.
50. Apply the formula from the problem 46.

𝐿′(𝑥) =
1

1− (𝑁 + 1)𝑥 + 𝐶1(𝑥)− 𝐶2(𝑥)) + . . .
=

1
1

𝐿(𝑥) − 𝑥

51. Apply the formula from the problem 46.

𝑊 (𝑥) =
1

1− (𝑁 + 𝑁 ′)𝑥 + (𝐶1(𝑥) + 𝐶
′
1(𝑥))− (𝐶2(𝑥) + 𝐶

′
2(𝑥)) + . . .

=
1

1
𝐿(𝑥) + 1

𝐿′(𝑥) − 1

52. Admissible words of the language 𝑀 are the chains of the language 𝐿. Chains of the length 𝑛 consist of
𝑛+1 letters. Therefore 𝐶𝑛(−𝑥) = (−1)𝑛+1𝐶𝑛(𝑥). Thus we obtain 𝑀(−𝑥) = 1 − 𝑁𝑥 + 𝐶1(𝑥) − 𝐶2(𝑥) + . . . , i.e.
𝐿(𝑥)𝑀(−𝑥) = 1.

8 Additional problems

53. The existence of a free subset under the assumption 𝑚 ≤ 𝑘𝑑(𝑑 − 1)𝑑−1 is established in Problems 37 and 38.
It remains to show that no such set exists for 𝑚 > 𝑘𝑑(𝑑− 1)𝑑−1.

1this means that any arc of any maximal chain is not on the right from the last arc of the chain 𝑐
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a) If we are given 𝑚 > 𝑛2/4 words of length two, which form a free set 𝑆, then the first letter of any of these words
cannot coincide with the last letter of another word, i. e., there are two disjoint subsets of letters, 𝑃 and 𝑄, whose
elements may only serve as the first letter or the last letter, respectively, for a word in 𝑆. Let 𝑟 = |𝑃 | + |𝑄| ≤ 𝑛,
and let 𝑠 = |𝑃 | · |𝑄| ≥ |𝑆| = 𝑚 > 𝑛2/4. By the Viet theorem, the numbers |𝑃 | |𝑄| are the roots of quadratic
equation 𝑥2− 𝑟𝑥 + 𝑠 = 0, whose discriminant 𝐷 = 𝑟2− 4𝑠 is negative under the above constrains on 𝑟 and 𝑠; hence
we get a contradiction.
b) Let 𝐵 be a free set consisting of 𝑚 words of length 3. Since no letter can be both the first and the last letter for
words of the same free set, the alphabet 𝐴 contains two disjoint subsets 𝑋 and 𝑌 , whose element can serve as the
first letter or the last letter, respectively, for a word in 𝐵. If there are letters that does not occur as the first or the
last letter of a word in 𝐵, we add each of them to one of 𝑋 and 𝑌 . Without loss of generality, we assume that the
number 𝑠 of elements of the set 𝑋 = {𝑥1, . . . , 𝑥𝑠} is no greater than the number 𝑡 of elements of 𝑌 = {𝑦1, . . . , 𝑦𝑡}.
Each element 𝐵 has the form 𝑥𝑖1𝑥𝑖2𝑦𝑗1 or 𝑥𝑖1𝑦𝑗1𝑦𝑗2 , and no final subword 𝑥𝑦 of an element of the first type can be
the beginning of an element of the second type. Let us change the set 𝐵 by replacing each word of the first type
with a word of the second type according to the rule 𝑥𝑖𝑥𝑦 ↦→ 𝑥𝑦𝑦𝑖, where 1 ≤ 𝑖 ≤ 𝑠 ≤ 𝑡. It is readily seen that
such transformation maps no element of 𝐵 to another element of 𝐵, no distinct elements are mapped to the same
one, and the resulting set 𝐵′ remains free. All elements of 𝐵′ are of the form 𝑥𝑖1𝑦𝑗1𝑦𝑗2 . Therefore, the number of
the elements of 𝐵′ (which is still 𝑚) does not exceed 𝑠𝑡2, whence

𝑚 ≤ 𝑠𝑡2 ≤ (𝑛− 𝑡)𝑡2 ≤
(︂

𝑛− 2𝑛

3

)︂ (︂
2𝑛

3

)︂2

=
4𝑛3

27
= 4𝑘3,

as required.
c) The proof uses the following analytical
Lemma. Let 𝑅(𝑥) = 1+𝑎1𝑥+𝑎2𝑥

2 + . . . be a series with positive integer coefficients. Suppose that 𝑅(𝑥) = 1/𝑝(𝑥)
for a polynomial 𝑝(𝑥) with constant term 1. Let 𝑅𝑛(𝑥) = 1 + 𝑎1𝑥 + 𝑎2𝑥

2 + · · · + 𝑎𝑛𝑥𝑛. If we have 𝑝(𝑥) ≥ 𝑚 > 0
for all 𝑥 ∈ [0, 𝑥0], where 𝑥0 > 0, then inequality 𝑅𝑛(𝑥0) ≤ 1/𝑚 holds for each 𝑛 > 0.

Omitting the proof of the Lemma, we pass to the solution of the Problem. Let 𝑠 = 𝑚𝑘−𝑑 − (𝑑 − 1)(𝑑−1); we
need to show that no free set exists if 𝑠 > 0. Assume the contrary. Then, by Problem 39 a), the series 1/𝑝(𝑥),
where 𝑝(𝑥) = 1− 𝑑𝑘𝑥 + 𝑚𝑥𝑑, has positive integer coefficients (there can be no zero coefficients, since the series is
infinite by Problem 33). Note that the polynomial 𝑝(𝑥) is positive on the segment [0, 1] whenever 𝑠 > 0 (proof: the
minimum of this polynomial on [0, 1] is achieved either at an end of this segment, where 𝑝(𝑥) is positive, or at a
point 𝑥0 such that 𝑝′(𝑥0) = 0, i. e., at 𝑥0 = 1

𝑘(𝑑−1) ; then 𝑝(𝑥0) = 𝑠𝑥𝑑
0 > 0). It means that there is a number 𝑚 > 0

such that 𝑝(𝑥) ≥ 𝑚 for 𝑥 ∈ [0, 1]. By Lemma, it follows that, for all 𝑛, the number of words of length at most 𝑛,
which is 𝐿𝑛(1), is bounded by the constant 1/𝑚.

54. a) By definition, the forbidden words of 𝐿! are all two-letter words that are not forbidden in 𝐿. Hence the
forbidden words of (𝐿!)! are all two-letter words that are not forbidden in 𝐿!, i. e. exactly all forbidden words of 𝐿.
Thus the alphabets and the sets of forbidden words for languages 𝐿 and (𝐿!)! are the same, hence the languages
are equal.
b) Since the set of forbidden words for the language 𝑀 = (𝐿1 + 𝐿2)! is the union of the sets of forbidden words
for the languages 𝐿!

1 and 𝐿!
2, and the alphabet of 𝑀 is the union of their (disjoined) alphabets, the language 𝑀 is

the free product of 𝐿!
1 and 𝐿!

2 (see definition in Problem 51).
c) The forbidden words for (𝐿1 ·𝐿2)! are the admissible two-letter words of the languages 𝐿1 and 𝐿2 and all words
of the form 𝑎𝐵, where 𝑎 is a letter of the alphabet of 𝐿1 and 𝐵 is a letter of the alphabet of 𝐿2. Hence

(𝐿1 · 𝐿2)! = 𝐿!
2 · 𝐿!

1.

55. Let 𝑤 be a word of length 𝑛𝑘 (where 𝑘 ≥ 1) over the alphabet of 𝐿, and let 𝑤(𝑛) be the corresponding
word of 𝐿(𝑛). Let us break 𝑤 into subwords 𝑤 = 𝑤1 . . . 𝑤𝑘 each of which corresponds to a letter of the language
𝐿(𝑛). It is readily seen that 𝑤 has a forbidden subword 𝑢 (which consists, by definition, of at most 𝑑 letters) if and
only if there is a subword 𝑤′ = 𝑤𝑝 . . . 𝑤𝑝+𝑚−1 such that each 𝑤𝑖 either is contained in the word 𝑢 or overlaps with
it, so that the number 𝑚 of 𝑛-letter pieces in 𝑤′ satisfies the inequality 𝑚 ≤ 𝑠, where

𝑠 = 2 +
[︂
𝑑− 2

𝑛

]︂
.

Thus any non-admissible word 𝑤(𝑛) of 𝐿(𝑛) contains a non-admissible word of length at most 𝑠, hence the
language 𝐿(𝑛) can be defined by a finite set of forbidden words, and the length of each forbidden word is no greater
than 𝑠. This proves part a) of the problem.
b) Answer: not always.

Let us prove that the lengths of forbidden words of 𝐿(𝑛) are less than 𝑑 if 𝑑 ≥ 3 and 𝑛 ≥ 2; in particular, this
language is not 𝑑-defined, which gives a negative answer to b). It suffices to prove the inequality 𝑠 < 𝑑, or

2 +
𝑑− 2

𝑛
< 𝑑.
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The last inequality is clearly equivalent to inequality (𝑑 − 2)(1 − 1/𝑛) > 0, which is obvious under the given
constrictions on 𝑑 and 𝑛.
c) Answer: 𝑛 = 𝑑− 1.

By the above, the language 𝐿(𝑛) is either quadratic or free (i. e., the lengths of forbidden words do not exceed 2)
under assumption 𝑠 ≤ 2, which is equivalent to inequality 2 + 𝑑−2

𝑛 < 3, or 𝑛 > 𝑑− 2, i. e., 𝑛 ≥ 𝑑− 1. On the other
hand, if 𝑛 ≤ 𝑑 − 2, then there exists a 𝑑-defined language 𝐿 such that the language 𝐿(𝑛) has forbidden words of
more than three letters: for example, we can take the language 𝐿 over the three-letter alphabet {𝑎, 𝑏, 𝑐} with one
forbidden word 𝑎𝑏𝑐𝑑−2.

56. See the solution of Problem 58.

57. Answer: yes.
For example, let 𝐴 be an alphabet of 𝑛 ≥ 2 letters. Consider the language 𝐿 = 𝐹𝐴 ·𝐹 !

𝐴. Since 𝐹𝐴 has exponential
growth (in the statement of Problem 55 c) we can take 𝑐1 = 𝑛 + 1 and 𝑐2 = 𝑛), and since 2𝐹𝐴(𝑥) ≥ 𝐿(𝑥) ≥ 𝐹𝐴(𝑥),
the language 𝐿 also has exponential growth. By Problem 53 c), we have 𝐿! = (𝐹 !

𝐴)! · 𝐹 !
𝐴 = 𝐿, thus both 𝐿 and 𝐿!

have exponential growth.

58. First we prove the following assertion (it is not necessary for solving Problem 56 only).
Lemma. Let 𝑎 = {𝑎0, 𝑎1, 𝑎2, . . . } be a sequence such that 𝑎0 = 1 and the inequalities 𝑎1 ≥ 2, . . . , 𝑎𝑁 ≥ 2 for
some positive integer 𝑁 . Then the sequence 𝑎 has polynomial (respectively, exponential) growth if and only if the
corresponding inequalities in assertions b) and ) hold for all 𝑎𝑘 with 𝑘 ≥ 𝑁 .
Proof of the Lemma. Let 𝑀 = max

𝑖≤𝑁
{𝑎𝑖}. It is clear that if, for some polynomials 𝑝, 𝑞 of degree 𝑑, the inequalities

𝑝(𝑘) ≥ 𝑎𝑘 ≥ 𝑞(𝑘) hold for 𝑘 ≥ 𝑁 , the inequalities 𝑝(𝑘) + 𝑀 ≥ 𝑎𝑘 ≥ 𝑞(𝑘) −𝑀 hold for all 𝑘. The Lemma for the
case of polynomial growth follows. Similarly, if 𝑐𝑘

1 ≥ 𝑎𝑘 ≥ 𝑐𝑘
2 for 𝑘 ≥ 𝑁 , then (𝑀 + 𝑐1)𝑘 ≥ 𝑎𝑘 ≥ 𝑔𝑘 for all 𝑘, which

completes the proof of the Lemma.
Let us pass to the solution of the problem. Clearly, to get all admissible words of length ≥ 𝑑− 1, we can do the

following. We start with the word at a vertex of the graph. Then we go along a path that starts at this vertex, and
each time we read a letter on an edge that we pass, we add this letter to the right of our word. Clearly, different
words are obtain from different paths. It is readily seen that the language is finite if and only if no path returns to
the initial vertex, that is, the graph has no cycles (it proves assertion a)). It remains to consider the case when the
language is finite and there is a cycle in the graph. In this case the number 𝑎𝑗 of words of length 𝑗 ≥ 𝑑 is equal to
the number of paths of length 𝑗 − 𝑑 + 1.

Assume that there are two intersecting cycles; let their lengths be 𝑑1 and 𝑑2, and let 𝑣 be their common vertex
such that the edges issuing from it when we go along the two cycles are distinct (and correspond, say, to letters 𝑥
and 𝑦). The words that we read on edges when we walk by paths of length 𝑘 that start at 𝑣 and go along each of
the cycles are distinct, hence 𝑎𝑘 ≥ 2 for all 𝑘 ≥ 0. Moreover, for each 𝑗 = (𝑑−1)+𝑞(𝑑1 +𝑑2)+𝑟, where 𝑟 < 𝑑1 +𝑑2

is the remainder of division of 𝑗 − 𝑑 + 1 by 𝑑1 + 𝑑2, there exist at least 2𝑞 distinct paths of length 𝑗 − 𝑑 + 1 (on
each of 𝑞 steps we go along both cycles in an arbitrary order, and then make 𝑟 steps in an arbitrary cycle), thus

for 𝑗 ≥ 2𝑑 we have 𝑎𝑗 ≥ 2𝑞 = 2
[︁

𝑗−𝑑+1
𝑑1+𝑑2

]︁
≥ 𝑐𝑗 , where 𝑐 = 21/2(𝑑1+𝑑2). Since always 𝑎𝑗 ≤ 𝑛𝑗 , the Lemma (for 𝑁 = 2𝑔)

implies that the growth is exponential.
It remains to consider the case when the graph Γ𝐿 has cycles, but they do not intersect each other. It suffices

to verify the polynomiality condition for the number 𝑏𝑘 = 𝑎𝑘+𝑑−1 of paths of length 𝑘 in the graph Γ𝐿 (since if the
corresponding inequalities hold for 𝑏𝑘, then they also hold for 𝑎𝑘 for 𝑘 ≥ 𝑑− 1 after the polynomials 𝑝(𝑥) and 𝑞(𝑥)
are replaced with polynomials of the same degree 𝑝1(𝑥) = 𝑝(𝑥 + 𝑑 − 1) and 𝑞1(𝑥) = 𝑞(𝑥 + 𝑑 − 1)). We will prove
that each term of the sequence 𝑏𝑘 is equal to the value of some polynomial 𝑏(𝑘) with positive highest coefficient
(we say that such sequences are polynomial).

Let us consider another graph Γ′𝐿, whose vertices are the cycles of Γ𝐿 and those vertices of Γ𝐿 that belong to no
cycle (the latter will be referred to as isolated vertices), and whose edges correspond to the edges that connect the
corresponding components (cycles or isolated vertices) of Γ𝐿. It is clear that the graph Γ′𝐿 has no cycles, i. e., the
set of paths in it is finite. Let 𝑄𝑣 be the set of paths in Γ′𝐿 that start at a given vertex 𝑣, and let 𝑞𝑣

𝑘 be the set of the
corresponding paths of length 𝑘 in Γ𝐿. Since 𝑏𝑘 =

∑︀
𝑣 𝑞𝑣

𝑘 , it suffices to show that the sequence {𝑞𝑣
𝑘} is polynomial

for each vertex 𝑣. We proceed by induction on the length 𝐷 = 𝐷(𝑣) of a maximal path that starts at 𝑣. If 𝐷 = 0,
then either 𝑞𝑣

𝑘 = 0 for 𝑘 > 0 (if 𝑣 is an isolated vertex), or 𝑞𝑣
𝑘 = 1 for all 𝑘 (if 𝑣 is a cycle), thus the corresponding

sequence is always polynomial. Let now 𝑣 be an initial vertex of Γ′𝐿, from which 𝑟 arrows 𝑎1, . . . , 𝑎𝑟 issue to
vertices 𝑣1, . . . , 𝑣𝑟 (which are not necessarily distinct). By induction, we assume that 𝑞𝑣𝑖

𝑘 = 𝑏𝑖(𝑘) is a polynomial
with positive highest coefficient. If 𝑣 is an isolated vertex, then 𝑞𝑣

𝑘 =
∑︀𝑟

𝑖=1 𝑞𝑣𝑖

𝑘−1, hence this sequence is polynomial
as the sum of polynomial sequences. On the other way, if 𝑣 is a cycle, then, before we pass along one of the edges
𝑎1, . . . , 𝑎𝑟 a word of any length is possible in the cycle, hence 𝑞𝑣

𝑘 =
∑︀𝑟

𝑖=1

(︁∑︀𝑘
𝑗=1 𝑞𝑣𝑖

𝑘−𝑗

)︁
=

∑︀𝑟
𝑖=1

(︁∑︀𝑘
𝑗=1 𝑏𝑖(𝑘 − 𝑗)

)︁
is the sum of polynomials with positive highest coefficients. This completes the proof.

Note. It is possible to define the growth of any regular set in a similar way. To this end, the corresponding
finite automaton is used.
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59. Let 𝑀 be the set of admissible words. Assume that the language is 𝑑-defined. Let us prove that each word is
𝑀 -equivalent to a word of no more than 𝑑 letters.

Indeed if a word 𝑣 is non-admissible, then, for any word 𝑤, the word 𝑣𝑤 is also non-admissible. Hence all
non-admissible words are equivalent. in particular, any of them is equivalent to a forbidden word, which is of
length at most 𝑑.

Assume that 𝑢 is an admissible word of length greater than 𝑑. By 𝑣 denote the subword of 𝑢 consisting of its
last 𝑑 letters. Let 𝑤 be an arbitrary word. If the word 𝑢𝑤 has a forbidden subword, then this subword is contained
in 𝑣𝑤, since the length of any forbidden word is at most 𝑑. Hence the words 𝑢 and 𝑣 are equivalent.

Let the alphabet have 𝑘 letters. Then the number of words of length at most 𝑑 is no greater than (𝑘 + 1)𝑑. Let
𝑛 = (𝑘 + 1)𝑑 + 1. In any set of 𝑛 words there exist two words that are 𝑀 -equivalent to the same word of length at
most 𝑑 and, thus, to each other. Therefore, the set of admissible words is regular.

60. a) Let 𝑆 be a maximal set of words in which no two words are 𝑀 -equivalent. Then any other word is equivalent
to one of 𝑆. Let us construct a finite automaton. Take 𝑆 as the set of vertices of the graph. For all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴,
we draw an arrow marked by 𝑎 from 𝑠 to the vertex that is 𝑀 -equivalent to 𝑠𝑎. We say that the vertex which is
𝑀 -equivalent to the empty word is the initial vertex of the automaton, and all elements of 𝑆 which belong to 𝑀
are the approving vertices of the automaton. It is easy to see that the automaton approves a word if and only if it
belongs to 𝑀 .
b) Any word determines a path along arrows of the finite automaton. Clearly, if to words determine paths ending
at the same vertex, then these words are 𝑀 -equivalent, where 𝑀 is the set of all words approved by the automaton.
Hence the number 𝑛 in the definition of regular set can be taken to be one plus the number of the vertices of the
automaton.

61. Consider a finite automaton (Γ, 𝑣0, 𝑊 ) which approves the set 𝑀 . For each vertex 𝑣 of Γ, denote the set of
words for which the corresponding paths in Γ end at 𝑣 by 𝑇𝑣.

Further, for each vertex 𝑣 and each letter 𝑎 denote by 𝑈(𝑣, 𝑎) the set of all vertices 𝑢 of Γ such that there is an
arrow marked by 𝑎 from 𝑢 to 𝑣. Then the following relations hold:

𝑇𝑣0(𝑥) = 1 +
∑︁
𝑎∈𝐴

∑︁
𝑢∈𝑈(𝑣0,𝑎)

𝑥𝑇𝑢(𝑥) (1)

and
𝑇𝑣(𝑥) =

∑︁
𝑎∈𝐴

∑︁
𝑢∈𝑈(𝑣,𝑎)

𝑥𝑇𝑢(𝑥) (2)

for 𝑣 ̸= 𝑣0.
Let us number the vertices of Γ, starting with 𝑣0: 𝑉 = {𝑣0, 𝑣1, 𝑣2 . . . , 𝑣𝑘}. Note that each of relations (1), (2)

can be viewed as an equation of the form

(1 + 𝑥𝑃𝑖(𝑥))𝑇𝑣𝑖
(𝑥) =

∑︁
𝑗 ̸=𝑖

𝑥𝑄𝑖𝑗(𝑥)𝑇𝑣𝑗
(𝑥) + 𝑅𝑖(𝑥), (3)

where 𝑃𝑖(𝑥), 𝑄𝑖𝑗(𝑥), 𝑅𝑗(𝑥) are some given polynomials, with respect to unknown series 𝑇𝑣0(𝑥), . . . , 𝑇𝑣𝑘
(𝑥).

Let us try to solve equations (3). We use the last equation to express 𝑇𝑣𝑘
(𝑥) in terms of the rest series,

𝑇𝑣𝑘
(𝑥) =

∑︁
𝑗 ̸=𝑘

𝑥
𝑄𝑘𝑗(𝑥)

(1 + 𝑥𝑃𝑘(𝑥))
𝑇𝑣𝑗

(𝑥) +
𝑅𝑘(𝑥)

(1 + 𝑥𝑃𝑘(𝑥))
,

substitute this expression instead of 𝑇𝑣𝑘
(𝑥) into the remaining equations, and multiply them by (1+𝑥𝑃𝑘(𝑥)). Thus

we obtain equations of the same form, but their number (which is also the number of unknowns) decreases by
one. By doing the same for 𝑇𝑣𝑘−1(𝑥), 𝑇𝑣𝑘−2(𝑥), etc., we obtain at last an expression of 𝑇𝑣0(𝑥) as a quotient of two
polynomials. By substituting it into the expression for 𝑇𝑣1(𝑥), we find that this series is also a quotient of two
polynomials. In this way we obtain the same for all 𝑇𝑣𝑖

(𝑥). It remains to note that 𝑀(𝑥) =
∑︀

𝑣∈𝑊 𝑇𝑣(𝑥).

62. For each word 𝑣, denote by 𝑣𝑜𝑝𝑝 the word consisting of the same letters in the opposite order. For any set of
words 𝑀 , we write 𝑀𝑜𝑝𝑝 = {𝑣𝑜𝑝𝑝 | 𝑣 ∈ 𝑀}. Clearly, 𝑀𝑜𝑝𝑝(𝑥) = 𝑀(𝑥) for any 𝑀 . If 𝐿 is a language whose set of
forbidden words is 𝐵, then by 𝐿𝑜𝑝𝑝 we denote the language whose set of forbidden words is 𝐵𝑜𝑝𝑝.

Let us return to our problem. It is clear that the set 𝑀𝑜𝑝𝑝
𝑤 consists of all admissible words of 𝐿𝑜𝑝𝑝 which start

with a subword equal to 𝑤𝑜𝑝𝑝. This set is regular (the proof is similar to the solution of problem 59). Hence the
series 𝑀𝑤(𝑥) = 𝑀𝑜𝑝𝑝

𝑤 can be represented as a quotient of two polynomials.
The set 𝑀𝑤 is also regular, but the proof of this fact would take more place.

11


