
RIBBON TILE INVARIANTS FROM SIGNED AREACristopher MooreComputer Science Department and Department of Physics andAstronomy, University of New Mexico, Albuquerque NM 87131moore@cs.unm.eduIgor PakDepartment of Mathematics, MIT,Cambridge, MA 02139pak@math.mit.eduMay 17, 2001Abstract. Ribbon tiles are polyominoes consisting of n squares laid out in a path,each step of which goes north or east. Tile invariants were �rst introduced in [P1],where a full basis of invariants of ribbon tiles was conjectured. Here we present acomplete proof of the conjecture, which works by associating ribbon tiles with certainpolygons in the complex plane, and deriving invariants from the signed area of thesepolygons. 1. IntroductionPolyomino tilings have been an object of attention of serious mathematiciansas well as amateurs for many decades [G]. Recently, however, the interest in tilingproblems has grown as some important ideas and techniques have been introduced.In [P1], the second author introduced a tile counting group, which appears to encodea large amount of information concerning the combinatorics of tilings. He made aconjecture on the group structure, and obtained several partial results. A specialcase of the conjecture was later resolved in [MP]. In this paper we continue thisstudy and complete the proof of the conjecture.Consider the set of ribbon tiles Tn, de�ned as connected n-square tiles with notwo squares in the same diagonal x + y = c (as in the �gures below). It is easy tosee that jTnj = 2n�1, as each tile can be associated with a path of length n� 1 inthe square lattice, each step of which goes east or north. Recording these moves by0 and 1 respectively, we obtain a sequence " = ("1; : : : ; "n�1) 2 f0; 1gn�1, whichuniquely encodes a ribbon tile. We will refer to this tile as �".Key words and phrases. Polyomino tilings, tile invariants, Conway group, height representation.Typeset by AMS-TEX1



2 CRISTOPHER MOORE, IGOR PAK
0

1Figure 1. Two dominoes.
00

10
01

11Figure 2. Four ribbon trominoes.
000

010 001 011

100 001

101
111Figure 3. Eight ribbon tetrominoes.Now, let � be a �nite simply connected region, and let � be a tiling of � byribbon tiles in Tn, n � 2. We denote by a"(�) the number of times the ribbon tile�" is used in �.Conjecture 1.1 [P1] Let � and � be as above. Then for every i, 1 � i < n=2,we have: X": "i=0; "n�i=1 a"(�) � X": "i=1; "n�i=0 a"(�) = ci(�);where the ci(�) depend only on � and are independent of the tiling � of �. Fur-thermore, when n is even, we have:X": "n=2=1 a"(�) = c�(�) mod 2;



RIBBON TILE INVARIANTS FROM SIGNED AREA 3where c�(�) is also independent of �.The main result of the paper is a proof of this conjecture for all n � 2 :Theorem 1.2 Conjecture 1.1 holds for tilings by ribbon tiles Tn for all n � 2,and for all simply connected regions �.A few words about the history of this conjecture. For n = 2, it implies that forevery domino tiling of �, the parity of the number of vertical dominoes is alwaysthe same. This, in fact, holds for every region, not just the simply connected ones,and follows from a folklore coloring argument (see [G,P1] for details).For n = 3, the conjecture gives only one relation:a01(�)� a10(�) = c1(�):This is the celebrated Conway-Lagarias relation for trominoes [CL]. Recently, theconjecture was established for n = 4 [MP], using a combinatorial technique similarto [CL]. In this notation, it was shown in [MP] that:a001 + a011 � a101 � a111 = c1(�);a010 + a011 + a110 + a111 = c�(�) mod 2:It was shown in [CL], in a certain rigorous sense, that even for n = 3, theconjecture can't be proved by means of coloring arguments. This was extended bythe second author to all n � 4 [P1]. It was observed in [P1], that for n = 3 thereexists a non-simply connected region for which the relations in the conjecture donot hold. Thus, there is little hope of generalizing the conjecture to all regions.The conjecture originated in [P1], where the author considered only row (orcolumn) convex regions �, and proved the linear relations in Conjecture 1.1 for allsuch � [P1, Theorem 1.4]. The technique used a connection with combinatorics ofYoung tableaux which could not be extended to all simply connected regions (see[P1] for details). The author in [P1] also showed that the linear relations in theconjecture are the only relations which can occur between the a"(�), even for thissmaller set of regions (see section 2 below).About the proof technique: We use notion of tile invariants, introduced in [P1],but here we de�ne new real-valued invariants, which we call ad�ele invariants. Asit turns out, these invariants imply all the integer-valued invariants that we needto establish. We then show the validity of the ad�ele invariants by presenting themas a signed area of a certain polygon corresponding to each tile. These two resultstogether imply Theorem 1.2.The rest of the paper is structured as follows. In section 2 we introduce tileinvariants and compute the tile counting group based on Theorem 1.2. Much of thematerial follows [P1], so we present only sketches of the proofs for completeness. Insection 3, we de�ne and study the ad�ele invariants. Small examples are computedin section 4. We exhibit the relationship between the ad�ele invariants and integerinvariants in section 5. This completes the proof of Theorem 1.2. We conclude with�nal remarks in section 6.



4 CRISTOPHER MOORE, IGOR PAK2. Tile invariantsLet us start by de�ning tilings and tile invariants. Let � be a set of (closed)squares of a square grid Z2 on a plane. A region is a �nite subset � � �. Region� � � is called simply connected if its boundary @� is connected. We say that tworegions � and �0 are equivalent, denoted � � �0, if � is a parallel translation of �0(rotations and reections are not allowed). Let e� = f�0 : �0 � �g be the set ofregions equivalent to �.Let T = f�1; : : : ; �rg be a �nite set of simply connected regions, which we calltiles. By e�i we denote the set of their parallel translations, and let eT = [i e�i. Atiling � of �, denoted � ` �, is a set of tiles � 2 eT, such that their disjoint unionis � : � = G�2� �:Here we ignore the intersection of the boundaries.Let G be an abelian group, and let ' : T ! G be any map. We extend thede�nition of ' to all � 2 eT, by setting '(�) = '(�i) for all � � �i. We say that themap ' is a tile invariant of T if, for every simply connected region � and everytiling � ` � by the set of tiles T, we have:X�2� '(�) = c(�);where the constant on the r.h.s. depends only on the region � and is independentof �. In this paper G is either Z, or Zn(= Z=nZ), or R (with addition as the groupoperation).Tile invariants are directly related to numerical relations between the respectivenumbers of times di�erently-shaped tiles occur in a tiling. Indeed, let ai(�) = j�\e�ijbe the number of tiles � � �i in the tiling � ` �. We immediately have:rXi=1 '(�i) ai(�) =X�2� '(�) = c(�):In [P1], we introduced a tile counting group G (T), which is de�ned as a quotient:G (T) = Zr=
�a1(�)� a1(�0); : : : ; ar(�)� ar(�0)�; �; �0 ` ��;where �; �0 are tilings of the same simply connected region � by the set of tiles T.Computing the tile counting group G (T) is a di�cult task, even in simple cases.The main result of this paper is a computation of G (Tn ) for the case of ribbontiles:Theorem 2.1 If n = 2m+1, then G (Tn ) ' Zm+1. If n = 2m, then G (Tn ) 'Zm�Z2.Theorem 2.1 was stated as a conjecture in [P1]. It was shown in [P1] that itfollows from Theorem 1.2. For completeness, we sketch the proof below.



RIBBON TILE INVARIANTS FROM SIGNED AREA 5Sketch of proof. Indeed, in [P1, Theorem 1.4] it was shown that G (T) � Zm+1for n = 2m + 1 and G (Tn ) � Zm � Z2 for n = 2m. Observe that one can viewthe relations in Conjecture 1.1 as elements of G (Tn ). Recall that these relations,together with the trivial area invariant f0 (de�ned by f0(�) = 1 for all � 2 Tn),are independent in Zn (see the proof of Theorem 1.4 in [P1, x 5]). Now Theorem1.2 implies the result. �Before we conclude this section, let us make a �nal observation on the relationsin Conjecture 1.1 implied by previous work. Following [P1, x 9], de�ne the shadeinvariant as follows: fH(�") = n�1Xk=1 k � "k mod n;where " = ("1; : : : ; "n�1). The fact that it is an invariant follows easily from anextended coloring argument [P1, x 9]. Namely, consider a coloring of the squares� : Z2! Zn de�ned by �(x; y) = y mod n. Note that the sum of the colors in eachribbon tile � is equal to fH(�) + C, where C = C(n) 2 Zn is a constant whichdepends only on n. We omit the (easy) details.1Proposition 2.3 When n is even, the relations in the �rst part of Conjecture 1.1imply that in the second part.Proof. We will show that the mod 2 relation follows from the m = n=2 relationsin the �rst part, and the shade invariant. In the language of invariants, considerthe k-convexity invariants fk, introduced in [P1] :fk(�") = "k � "n�k; where " = ("1; : : : ; "n�1):We need to show that the shade invariant and the k-convexity invariants generatethe parity invariant f�:f�(�") = "m mod 2; where n = 2m:But this is immediate sincefH mod 2 = �f1 + 2f2 + : : : + (m� 1)fm�1�+ f� mod 2(cf. [P1, x 9]). This completes the proof. �3. New ribbon tile invariants and the signed areaLet Tn be the set of ribbon tiles, de�ned as above. From now on, we will also usea di�erent encoding of Tn, by sequences � = (�1; : : : ; �n) 2 f�1gn�1: Tn = f��g,where �� = �", if �i = 1� 2"i for all 1 � i � n� 1 (i.e. 0! +1 and 1! �1).1In contrast with other ribbon tile invariants we introduce, the shade invariant can be extendedto all regions, not just the simply connected ones [P1, Theorem 9.1].



6 CRISTOPHER MOORE, IGOR PAKFor every 1 � ` < n we de�ne a function �` : Tn ! R as follows:�`(��) = n�1Xk=1 �k sin 2�k `n ;where � = (�1; : : : ; �n�1), �k 2 f�1g as above. The main result of this section isthe following key observation:Theorem 3.1 The function �` : Tn ! R is a tile invariant for the set Tn ofribbon tiles, for all 1 � ` < n.We will call �` the `-th ad�ele invariant. Note that when n = 2m, we have�m(��) = 0 for all �� 2 Tn. The claim of the theorem is trivial in this case.The proof of Theorem 3.1 is based on a new geometric construction. But �rstwe need several de�nitions.Let the squares of the grid have numbers written on them, from 0 to n� 1, withthe rule that (x; y) 2 Z2 has the number x + y mod n. Let us orient edges of thegrid eastward and southward as in �gure 1 below. Set labels on the edges so thatthe edge between square k and (k + 1 mod n) has label k.Let ` 6= n=2 be �xed for the rest of this section. On a complex plane V = C ,�x n vectors v0; v1; : : : ; vn�1, where vk = e2�ik`=n. We say that a loop in V is apolygon if it is a closed (perhaps self-intersecting) path with straight edges.Now, let � be a simply connected region on a grid, and let @� be the boundaryof �. Fix any integer point O 2 @�. Consider a sequence of edges on the gridobtained by moving along @� counterclockwise, starting at O. Recall that theseedges are oriented and labeled with integers modulo n.We shall describe a map � = �`, which maps simply connected regions �, tileableby Tn, into polygons in V . First, �x any O0 2 V . As one moves along the sequenceof edges of @�, add a vector �vj 2 V , where j is a label of the edge in @�, and asign � is chosen depending on whether the edge in @� is oriented counterclockwiseor clockwise (see �gures below). We denote the resulting path by �() = �`(�).Note that it already has an induced orientation.
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Figure 4. The ribbon tile � = �0011 with labels on the edges, theroots of unity v0; : : : ; v4, vk = e2�ik=5, and the closed loop �1(�).



RIBBON TILE INVARIANTS FROM SIGNED AREA 7In the �gure above we present a V-pentomino (cf. [G]), which is encoded by� = (+1;+1;�1;�1) in our notation, along with 5 vectors v0; : : : ; v4, and thecorresponding polygon. Note that a priori, it is unclear whether our map is well-de�ned, i.e. whether all tileable regions correspond to closed loops in V . By de�ni-tion, �(�) is only a path starting at O0, with straight edges.Lemma 3.2 The above map �` is well-de�ned, i.e. for any simply connectedregion � tileable by Tn, the path �`(�) is a closed loop in V .Proof. We prove the result by induction on the area of �. Suppose � is one ofthe ribbon tiles and let (k + 1 mod n) be the label of the square in the lower leftcorner. Let O be the point in the upper left corner of this square. Now observethat the sequence of edges in @� has two labels k, then a sequence w of labels, thentwo labels k, and then the same sequence as w but in the opposite order. Observealso that the �rst two edges, with the label k, are directed counterclockwise, whilethe second two are clockwise. This implies that the pieces of �(�), corresponding tothese four edges, form two straight parallel intervals oriented in opposite directions.Note also, that each edge in the �rst sequence w has an orientation which isopposite to that of a corresponding edge in the second (reversed) w. Therefore, thepieces corresponding to the two w are exactly parallel to each other, with a shift of2vk. We conclude that �(�) is a closed loop in V , so � is well-de�ned for ribbontiles. This proves the base of our induction.The induction step is straightforward. Let � be a region tileable by Tn. Fix anytiling of �. Consider a tile � in the tiling such that �0 = � n � is simply connected.In [MP, Lemma 2.1] we prove that there always exists such a tile2. Now present @�as a union of two regions, @�0 and @� (intersections of these will cancel each otheras they have opposite orientations). If both �(�0) and �(�) are closed, then �(�) isalso closed. This completes the proof. �Let us present now a standard inductive de�nition of a signed area A() of anoriented polygon  in V (see e.g. [GO]). If  is not self-intersecting, de�ne A()to be the usual area times �1 depending on whether  is oriented counterclockwiseor not. If  is self-intersecting at point x, split  into the disjoint union of two 1and 2 (separated by the point x), and let A() = A(1) +A(2).Now let � be a region tileable by Tn. Let us show that for any `, the signedarea of  = �`(�) is invariant under parallel translation of � (recall that theconstruction of �` involves a �xed labeling of the plane, so a priori it may di�erfor �0 � �). Indeed, observe that for a parallel translation �0 � �, we have acyclic shift of the labels of the edges in @�0. Therefore �`(�0) is simply a rotationof �`(�) by a multiple of 2�`n . Thus these two loops have the same signed areaA��`(�0)� = A��`(�)�. Similarly, the choice of the starting point O 2 @� (andO0 2 V ) doesn't change the signed area of . We shall prove now that there existsa closed formula for A() when � is a ribbon tile.2Versions of this result were also used in [CL,Pr].



8 CRISTOPHER MOORE, IGOR PAKProposition 3.3 Let  = �`(��), where � = (�1; : : : ; �n�1) 2 f�1gn�1. ThenA() = 2 n�1Xk=1 �k sin 2�k `n :Proof. This follows immediately from the analysis used in the induction step inthe proof of Lemma 3.2. Indeed, let us translate the tile � so that the lower leftsquare has label 1. Also, choose point O 2 @� as in the proof above. Recall that thesigned area remains unchanged. Observe that the signed area is exactly the areaof the parallelogram whose vertices are the endpoints of two horizontal intervals oflength 2. Therefore A() = 2 � height, where height is the height of the image of asequence of labels w, de�ned as in the proof above. Now, the height of the imageof w is the sum of the heights of each of the vectors vk, taken with a sign �k, fork = 1; : : : ; n� 1. This implies the formula in the proposition. �Proposition 3.4 Let � ` � be a tiling of � by ribbon tiles in Tn. ThenX�2� A��`(�)� = A��`(�)�; for all 1 � ` � n� 1:Proof. This is an immediate corollary of the induction step in the proof ofLemma 3.2. Indeed, let us prove the claim by induction on the area of �. Theclaim is trivial when � = � 2 Tn.Now, by construction,  is a union of 1 and 2, where  = �`(�), 1 = �`(�0),and 2 = �`(�). By de�nition, this implies that A() = A(1) + A(2). Thiscompletes the inductive step and �nishes the proof. �Proof of Theorem 3.1 This is a corollary of Propositions 3.3 and 3.4. Indeed,Proposition 3.4 implies that �`(�) = 12 A��`(�)�for every ribbon tile � 2 Tn, and every 1 � ` � n�1. Now Proposition 3.4 impliesthat �` satis�es the de�nition of a tile invariant. �4. ExamplesLet n = 3. In the Figure 4 below, we show all four ribbon trominoes ��, alongwith the corresponding polygons �1(��) 2 V . Let us calculate the values of thead�ele invariant �1. Consider the straight trominoes �rst. Observe that the signedarea of the corresponding polygons is zero. Indeed, the two equilateral trianglescancel each other, since we circle one equilateral triangle clockwise and the othercounterclockwise. On the other hand, for the two right trominoes the ad�ele invariant�1 = �p3. Indeed, in both cases these polygons circle eight equilateral triangles,



RIBBON TILE INVARIANTS FROM SIGNED AREA 9
Figure 4. Four ribbon trominoes �� and the corresponding closedloops �1(��).in the �rst case counterclockwise and in the other clockwise. Thus the signed areais A = �8 p34 = �2p3, which implies the claim.Now observe that 1p3 � �1 coincides with the Conway-Lagarias invariant (seesection 1). This gives a new interpretation of this remarkable invariant in terms ofan \area," rather than the \winding number" as de�ned in [CL].Let us note here that for n = 3; 4 the group of translations of V = C by integerlinear combinations of vectors vi is a lattice in V . Thus the corresponding polygons�(�) have a natural combinatorial group structure and can be described by thetechnique of [CL]. However, for other values of n these vectors do not form alattice, and instead form a dense set in the plane. This explains the reason why[MP] were able to completely resolve the case n = 4, and why the case n = 5 hasremained mysterious until now. (We note that signed area on the square grid isused to study other tetrominoes in [Pr].)Consider the case n = 5. Let us calculate the ad�ele invariant of several rib-bon pentominoes. First, let � be the V-pentomino, which corresponds to � =(+1;+1;�1;�1). We have�1(�) = 12 A��1(��)� = sin 2�5 + sin 4�5 � sin 6�5 � sin 8�5= 2 sin 2�5 + 2 sin 4�5 =s5 +p52 +s5�p52 :The same calculation can be done for all remaining ribbon pentominoes. Forexample, for I- and Z-pentominoes, which correspond to (+1;+1;+1;+1) and(�1;+1;+1;�1), all ad�ele invariants are zero. In general, we have:Proposition 4.1 Let � be a ribbon tile with a 180� rotational symmetry. Then�`(�) = 0 for all 1 � ` � n� 1.Proof. Having 180� symmetry implies that �k = �n�k for all k < n2 . Onthe other hand, we have sin 2�k `n = � sin 2�(n�k) `n , i.e. all the sign terms in theexpression for �`(�) cancel each other. This implies the result. �
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Figure 5. Several ribbon pentominoes �� and the correspondingclosed loops �1(��). The remaining ribbon pentominoes, as well asthe corresponding closed loops, can be obtained from these by rotation,reection, etc.Before we conclude, let us state two possible ways of deriving the linear relationsin Conjecture 1.1 from ad�ele invariants.We consider only the case n = 5. Recall that sin �5 and sin 2�5 are rationallyindependent. Observe that for all regions � tileable by T5, we have:(�) �1(�) = �2c1 sin 2�5 � 2c2 sin 4�5 ;where c1 = c1(�) and c2(�) are as in Conjecture 1.1. Indeed, this holds for allribbon tiles � 2 T5, and thus by additivity for all tileable simply connected regions�. Since c1 and c2 are integers, by rational independence, the ad�ele invariant theninduces two integer-valued invariants.Another approach is based on using both �1 and �2. We have:(� �) �2(�) = �2c1 sin 4�5 + 2 c2 sin 2�5 :We can write both (�) and (� �) as��1;�2� = �2 �c1; c2�� sin 2�5 sin 4�5sin 4�5 � sin 2�5 � :Since the matrix on the r.h.s. is invertible, we can obtain c1 and c2 as a linearcombination of �1, �2 (the same for every tile �� 2 T5).We will show in the next section that we can generalize this argument for any n,and prove Theorem 1.2. 5. Proof of Theorem 1.2Let n = 2m + 1 be an odd integer, n � 3. We claim that in this case thefunctions �`(�), 1 � ` � m, are linearly independent (as real functions on Tn).



RIBBON TILE INVARIANTS FROM SIGNED AREA 11Similarly, when n = 2m is an even integer, the functions �`(�), 1 � ` < m, arelinearly independent (note that �m � 0 in this case). Let us state this as follows:Lemma 5.1 For all n, we have dim h�1; : : : ;�mi = m, where m = � (n�1)2 �.Proof of Theorem 1.2. By Proposition 2.3, it su�ces to prove only the �rstpart of Conjecture 1.1. We claim that this part follows from Lemma 5.1. Indeed,let W = hf1; : : : ; fmi, where fk is a k-convexity invariant de�ned in the proof ofProposition 2.3.Using sin 2�k`=n = � sin 2�(n � k)`=n, we can rewrite the `-th ad�ele invariantas follows:�`(��) = mXk=1 ��k � �n�k� sin 2�k `n = �2 mXk=1 �"k � "n�k� sin 2�k `n= �2 mXk=1 fk sin 2�k `n ;where � = (�1; : : : ; �n�1) 2 f�1gn�1, " = ("1; : : : ; "n�1) 2 f0; 1gn�1, �k =1� 2"k, for all 1 � k � n� 1 (so that �� = �"). This implies that �` 2 W . FromLemma 5.1 we obtain:m = dim h�1; : : : ;�mi � dim h f1; : : : ; fmi = dimW � m;and therefore h�1; : : : ;�mi =W . We conclude fk 2 h�1; : : : ;�mi for all 1 � k �m. The linearity of tile invariants implies that fk is a tile invariant of the set Tn ofribbon tiles (cf. proof of Proposition 2.3). This completes the proof of Theorem 1.2.� Proof of Lemma 5.1 Suppose n = 2m+ 1 is odd. Consider two n� n matricesX = (xk;`), Y = (yk;`), 0 � k; ` � n� 1, de�ned as follows:xk;` = cos 2�k `n ; yk;` = sin 2�k `n :Since Z = X + i �Y is a Vandermonde matrix Z = (zk;`), zk;` = exp(2�ik `=n), weimmediately have:det(Z) = Y0�k<`�n�1�e2�ik=n � e2�i`=n� 6= 0:Thus rk(Z) = n.From yk;` = �yn�k;`, y0;` = 0, and xk;` = xn�k;`, we obtain rk(Y ) � m,and rk(X) � m + 1. Since 2m + 1 = rk(Z) = rk(X + iY ) � rk(X) + rk(Y ), weimmediately have rk(Y ) = m. From yk;` = �yk;n�`, 1 � ` � m, we conclude thatan m� (n� 1) submatrix Y 0 = (xk;`), where 1 � k � n� 1, 1 � ` � m, has rankrk(Y 0) = m. One can think of � 2 f�1gn�1 as vectors Rn�1 . Since��1(��); : : : ;�m(��)� = (�) � Y 0



12 CRISTOPHER MOORE, IGOR PAKand dimh�i = n� 1, we get dim h�1; : : : ;�mi = m.When n = 2m, the proof follows verbatim, except that in this case ym;` =�y0;` = �1 (depending on the parity of `). Then rk(X) = rk(Y ) = m, and theresult follows. � 6. Final remarksThe main result in this paper can be viewed as an existence of a large numberof invariants for tilings by ribbon tiles. Still, the source of these invariants remainssomething of a mystery, yet to be discovered. It seems that such a rich structureof invariants is an exception rather than the rule, and these sets of tiles enjoy somespecial properties others do not. In this section we shall speculate on the possibleexplanations for these questions.Let us start by saying, that although we do not pursue here the `rational in-dependence' approach (see section 4), it can in fact be used. In fact, it is quitestraightforward for prime n, while for composite n one has to employ �d, foreach d jn and M�obius inversion. In the original version of the paper the authorsfavored this idea, while at the end we chose to employ an elementary linear algebraapproach. Let us mention here that the arguments in section 5, while elementary,were inuenced by the ideas in [BF]. As the referee pointed out, one can think ofthe proof as an application of the discrete Fourier transform.We shall note here, that miraculously, for any n, the real-valued tile invariant�1 already induces a large number �(n) = 
(n= log logn) of linearly independentinteger-valued ribbon tile invariants. It would be interesting to �nd other examplesof this phenomenon.Let us now state the following conjecture, which seems more plausible now inview of Theorem 1.2.Conjecture 6.1 [P1] De�ne 2-ips to be transformations of tilings by Tn whichinvolve exactly two tiles. Then for any simply connected region �, and any twotilings �, �0 of �, there is a sequence of 2-ips which moves � into �0.The are several reasons behind this conjecture. For n = 2 the truth of theassertion is well known (see e.g. [T1]). For n � 3 it has been established when �has the shape of a Young diagram [P1] or skew Young diagram [P2]. For n = 3it was also proved by an ad hoc argument for a very special set of regions [W].There is also a topological reason in favor of the conjecture [T2]. Perhaps the mostcompelling reason,3 however, is given by the following result:Proposition 6.2 [P1] Conjecture 6.1 implies Theorem 1.2.Indeed, assume the conjecture. Then to prove Theorem 1.2 one needs only tocheck that the invariants are preserved along the 2-ips. As the structure of theips is known, this is straightforward. We refer to [P1] for details.3As the referee validly points out, this is rather a reason for wishing that Conjecture 6.1 weretrue. While we agree, we leave the �nal judgement to the reader.



RIBBON TILE INVARIANTS FROM SIGNED AREA 13To conclude, let us speculate on how Conjecture 6.1 can be proved. The mostpromising and relevant method seem the \height representation" approach, pio-neered in this context by Thurston [T1].4 In view of importance of the subject, letus elaborate on this.A height representation is a way of assigning a height to each site in the latticeso that a given tiling corresponds to a surface, i.e. a function from the lattice tothe space in which the heights take their values. While the best-known heightrepresentations are integer-valued, in general they can be two- or more-dimensionalvectors, or elements of a non-Abelian group (see [K,KK,MP,Pr,T1].Height representations have many uses. If one desires to sample randomly fromthe set of tilings of a given simply connected region, these representations can beused to prove that this set is connected under some set of local moves [K,R], todevise exact sampling Monte Carlo algorithms based on these moves [PW], and toplace upper limits on the mixing time of these algorithms [LRS]. They can also beused to develop an e�cient algorithm to tell whether a given region can be tiled atall [K,R], which is interesting since this problem is NP-complete in general, evenfor some simple sets of tiles (see e.g. [MR]).For tilings, the standard approach is to de�ne how the height changes, by smallincrements, as we move along the boundary between one tile and another. In orderfor the height to be a single-valued function, it must return to its original valuewhenever we travel around a loop. Therefore, each type of tile induces a relation inthe height group [CL,T1], or, in the Abelian case, a linear constraint on the amountby which the height increases or decreases as we traverse di�erent kinds of edges.For instance, domino tilings of the square lattice have a height representationwhich can be thought of as follows. We color the lattice as a checkerboard, withwhite and black squares alternating. Whenever we move along an edge of thelattice, we change the height by +1 if the square on our left is black, and �1 if itis white. The reader can easily check that a set of moves encircling a horizontal orvertical domino will have a total height change of +1 + 1 + 1 � 1 � 1� 1 = 0. Infact, this is our mapping � in the case n = 2. We refer the reader to [KK,R,T1] forother examples and details.Now consider what happens in our case. We de�ne a complex-valued heightfunction which is de�ned by local rules. It seem likely that our height functionis a projection onto two dimension of the height function with values in an n-dimensional lattice [T2], but we were unable to make this observation precise. Ifonly we could show a \nice" behavior under 2-ips, we would be able to proveConjecture 6.1 and perhaps even give a linear time algorithm for checking tileabilityby ribbon tiles. So far, this remains a fantasy, so we leave the reader here untilfurther developments.AcknowledgmentsWe would like to thank Jim Propp and an anonymous referee for helpful remarksand pointing out errors in the original version of the paper. Discussions with EzraMiller and Ravi Vakil helped to simplify the proof.4Interestingly, Thurston's paper [T1] was inspired by [CL].
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