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                                                Preface
This cycle is devoted to coverings of arbitrary figures by figures of a prescribed type

(usually by disks or balls). The task is to estimate their number, their total area etc.
Naturally, the most difficult are the problems where the precise estimate is required.

Fortunately it turns out that basic applications of these problems just don’t require an exact
answer, and it suffices to know the order of the respective value. The related definitions will be
formulated accurately in Part B.

Part A.
 A1.

It is not difficult to cover the unit square by a disk of area π/2. However, is it possible to
cover the square by several disks of total area less than π/2? The disks may intersect and get out
of the  square.

А2.
Cover the unit square by several disks of the same radius r. Let N(r) be the minimal

number of disks sufficient for this.
Clearly 0r  implies )(rN .
Determine the type of tending to infinity for this function. In other words: how fast does

it grow?

А3.
The same task but it is required to cover the unit cube by several (possibly intersecting)

balls of radius r.

Part B.

In the above problems we assumed that the notion of the “growth rate” is intuitively
clear. But below we shall need the precise definition for the “growth of a function”.

This definition is not quite obvious, and we will give it a bit later. Before that, having no
precise definition for the “growth of a function”, we will formulate certain properties of this
“growth”. Specifically:

In the sequel, we consider only functions f(x) such that
(*) f(x) is defined for all x exceeding some a (usually a=0, but for convenience we allow

a more general case, for example, functions like ln(x–1)).  Moreover we assume that f(x) is
positive everywhere (at any rate, for x>a), non-strictly increases and tends to infinity.

Denote the growth of f(x) by [f]. In the sequel, for simplicity we denote the growth of
xn by n.  Thus,  n = [xn].

We require that the growth of a function has the following features:
 (1) If  for all x  exceeding some b (b not necessarily equals a) we have f(x) > g(x) then [f]

 [g].
(2) Let A, B, C  be arbitrary positive numbers, and g(x) = Cf(Ax+B). Then [g] = [f].
(3) This easily implies that a situation is possible when both relations [f]  [g] and [g] 

[f] hold. In this case we set [f] = [g] as well.
If [f]  [g] but not [g]  [f] then we write [f] > [g].



However we still have not given a definition for growth. The correct answer is that
growth is just something subject to the above conditions.

Speaking more formally, we have to consider the class of functions subject to (*) and
split it into equivalence classes: f  g iff [f] = [g] (according to items (2), (3)).

Each of these classes is called the growth of all functions contained in it. Some of these
classes occur to be greater than others, so that we may say that a certain function grows faster (its
growth is greater) than another one.

B1.
Prove that 1 < 2.
(A reminder: 1 and 2  are not numbers but the growth of some functions.)

For ordinary numbers there are three alternatives: either a>b, or a=b, or a<b. However
for functions this doesn’t hold. There exist “incomparable functions”, that is, functions f and g
such that both assertions [f]  [g] and [g]  [f] fail.

B2.
Find two incomparable functions.

B3.
Find a function f(x) such that 1 < [f] < 3 but  f  is incomparable with 2.

B4.
Find a function f(x) such that for any a>0 we have  [f] < a.

B5.
Find a function  f(x)  such that  [f] = [f 2].

B6.
Does there exist a function  f(x) such that  [f] = [ln f] ?

Part C.

This part is devoted to coverings of figures. The main task is as follows: determine the
growth for the number of disks (or balls) sufficient to cover a given figure.

Definition. An epsilon-net (-net) is a set of points inside a given figure, such that the
distance from any point of the figure to at least one of the chosen points doesn’t exceed .
 (In other words, disks or balls of radius  cover the whole figure.)

Definition. A delta-lattice (a -lattice) is a set of points inside a given figure, such that
the distance between any two points in the set is not less than . (Of course, the numbers epsilon
and delta may coincide).

An -net is called minimal if it contains the minimal possible number of points. Denote
the number of points in a minimal -net by M().

A -lattice is called maximal if it contains the maximal possible number of points. Denote
the number of points in a maximal -lattice by N().

Think on your own why in the first case we have to consider a minimal net, and in the
second case a maximal lattice.

C1
Determine M() and N() for a segment of length a (and arbitrary , ).



C2
Give an estimate (as sharp as possible one) for M() and N() when a net and a lattice are

constructed in the unit disk, or in the unit ball. The estimate must be two-sided, that is of the
form (for instance)

2/ < M() < 5/

Definition. The dimension of a figure is the growth of M() as of the function in 1/.

C3
Prove that the dimension equals the growth of N() as of the function in 1/.

Thus the dimension can be defined both in terms of minimal nets and of maximal lattices.

C4
Give an example of a figure of dimension 3/2 .

C5
What are other possible values for the dimension of various figures? (It suffices to

provide several examples.)

C6
A helix is a curve which is located inside some disk and tends to its center; in polar

coordinated, it can be defined by the equation r = f() where  f is defined for   0 and decreases
tending to 0 at infinity.

Determine the dimension of a helix. Does this dimension depend on the specific
function f, or it is always the same?

After the intermediate final

Part D.

Refinement of Problem  A1.
Now, we are interested in a sharp estimate in Problem A1. In other words: we look for a

number α such that (1) the unit square cannot be covered by disks of total area less than α, and
(2)  for any β > α, this square can be covered by disks of total area β. (Try also to determine
whether the square can be covered by disks of total area equal to α.)

We split this problem into three different ones. To formulate the first problem, we recall
one of the solutions for problem A1: tile the square by the regular hexagons, and cover each
hexagon by a disk. The ratio of areas of a hexagon and a disk is  = 2π / 3√3. Since the total area
of hexagons is larger than the area of the square, the total area of disks  will be greater than ,
but the difference  –  can be made arbitrarily small by taking sufficiently small hexagons.

D1.
Suppose that all the radii of the disks should be equal. Prove that the above construction

is optimal, that is,  = .



D2.
Find  if it is allowed to use the disks of two distinct radii.

D3.
Find  if it is allowed to use the disks of arbitrary radii without any restrictions.

(Warning. The problems are NOT necessarily ordered by the ascending difficulty!)

D4 – D6.
The same problem but the task is to cover the unit cube by balls which of course may

intersect. (Here it suffices to give some good estimates; the precise answer is not known.)

D7.
We need to cover the square with some disks of equal radii so that each point is covered

by at least N disks. Prove that there exists some N such that it is possible to make this with total
area of the disks smaller than N .

D8.
Does the statement from D7 hold for N = 2?

Part E.
E1.

A checked sheet of paper lies on a table. Another checked sheet of paper is put on it; the
squares on both sheets have the same size but the lines on the second list aren’t parallel to those
on the first sheet. The upper sheet is transparent, so that we see how its lines dissect some fixed
square of the lower sheet.

Determine the maximum and the minimal possible number of parts in a dissection of a
lower square.

E2.
A checked sheet of paper of size 10000*10000 lies on a table. Above it, another checked

sheet of paper of size 1000*2000 is put; the squares on both sheets have the same size. The upper
sheet is transparent, so that we see how the lines of the lower sheet dissect the squares of the
upper one. So, the number of parts of the upper list occurs to be greater than two millions.
            Prove that this number is less than ten millions.

Part F.
Now we return to the problems of the same type as in cycle B. However, we consider a

somewhat different construction.  We assume the number  to be fixed (for instance =1) but
consider an unbounded figure Ф, for instance, the whole plane, a half-plane etc.

Consider an arbitrary point O of the given figure, and construct the figure Ф(R) consisting
of all points of the given figure whose distance from О does not exceed R (in other words, Ф(R)
is the intersection of the given figure with a disk or a ball with center O and radius R).

Denote by N(R) the number of points in a minimal -net in the figure Ф(R). Let χ be the
growth rate of the function N(R); if this function does not tend to infinity as R  , we
conventionally say that χ = 0.

The number χ is called the volume characteristics of the given figure.



F1.
Which figures have a zero volume characteristics?

F2.
Determine the volume characteristic of the following figures: (a) the plane, (b) a half-

plane, (c) a strip bounded by parallel lines.

F3.
Prove that the volume characteristic of a figure does not depend on the choice of point  О.

F4.
Given two positive numbers  and . Is it true, that the volume characteristics of a figure

Ф calculated using the disks of radius  is the same as that calculated using the disks of radius ?

F5.
Determine the volume characteristic of the interior and of the exterior of a parabola.

F6.
Determine the volume characteristic for each of three parts of the plane obtained by its

dissection by the hyperbola xy=1.

F7.
What are possible numerical values of the volume characteristic of a figure (in the plane

or in the space)?

F8.
Can the volume characteristic of a figure be not a number (in other words, can N(R) be a

function incomparable with some numbers)? For instance, can it be greater than 1, less than 2
and incomparable with 3/2, like the function from Problem B4?


