Shapiro’s inequality

A. Khrabrov

1 Shapiro’s inequality

In October, 1954 the American Mathematical Monthly published the following problem of Harold Shapiro

Prove the following inequality for positive numbers 1, x2, ..., Tn:
1 T2 Tn—1 Tn n
.. > — 1
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the equality holds only if all the denominators are equal.

In contrast to, say, “Kvant” magazine, it was allowed to publish problems in the Monthly, which were not solved by the
proposer, and the readers had not been informed about this nuance. This time the situation was exactly like that. The author
had a solution for partial cases n = 3 and 4 only.

In the following problems we can replace the condition that all the x;’s are positive with the condition that all the xj’s
are nonnegative and all the denominators are nonzero. Indeed, if the inequality is proven for positive numbers, then it is not
difficult to deduce the inequality for nonnegative numbers (and nonzero denominators). Let
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1.1. Prove the inequality (1) for n =3, 4, 5, 6.

1.2. Prove that the inequality (1) is wrong
a) for n = 20; b) for n = 14; c) for n = 25.

1.3. Prove the inequality (1) for monotonic sequences.
1.4. Prove that if the inequality (1) does not hold for n = m, then it does not hold for n = m + 2.
1.5. Prove that if the inequality (1) does not hold for n = m, where m is odd, then it does not hold for all n > m.

1.6. Prove the inequality (1) for n =8, 10, 12 and for n =7, 9, 11, 13, 15, 17, 19, 21, 23. Due to the statement of
the previous problem it is sufficient to prove the inequality only for n = 12 and n = 23.

1.7. Prove that f(x1,29,...,24) + f(Tn, Tp—1,...,21) Zn.
1.8. Assume that the function f(z1,za,...,z,) has a local minimum in the point (a1, asg, ..., a,), a1, as, ..., a, > 0.
a) Prove that f(a1,aq,...,a,) =n/2if n is even.

b*) Prove the same statement for odd n.
c¢) Use the statements niSa) and b) to prove the inequality for n = 7 and n = 8.

1.9. Prove the inequality f(x1,zs,...,2,) > cn for the following values of the constant c:

a) c=1/4; b) c= (V2 -1); c) c=5/12.

2 Useful and related inequalities

Prove the following inequalities assuming that all the xx’s are positive. Prove that the constants printed in bold can not
be decreased (for each n).

2.1. Mordell’s inequality.
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b) Find all n-tuples x1, xa, ..., x, such that the equality is achieved.
n 2 n 8 n
2.2. <;xk> > min {3, 3} : ;l’k(ﬂ?kﬂ + it + Tht3).

2.3. uiSa) Prove that for n < 8
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b) For which n > 8 this inequality is also true?
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3 After the intermediate finish

1.10. a) Prove that for each n there exists ¢, > 1, such that for all real z1, 29, ..., z, € [qi; @r] the inequality (1)
holds. '
b*) Is it possible to choose ¢ > 1, such that for all integers n > 0 and for all x; € [%; q] the inequality (1) holds?

1.11. Let S = f(x1,22,...,2,) be the left hand side of Shapiro’s inequality. Denote by aq, ag, ..., a, the numbers
xo/x1, X3/T2, ...y Tn/Tn_1, T1/Ty, arranged in increasing order.
1 1 .
a) Prove that S > oty T amra o T T oy

— kOnt1—k = 1
b) Let by, = { “kn+i=k Prove that 25 > by + by + ... + by;

Gt 1—k + /ThGni1—k Oitint1—k < 1
¢) Let g be the maximal convex function that does not exceed both functions e~* miS 2(e* 4 ¢*/2)~1. Prove that
25 > g(in(ara,)) + g(In(asan_1)) + ... + glin(ana)) > ng(0).
d) Prove that for each A > g(0) there exist a nonnegative integer n and positive numbers 1, xa, ..., &, such
that S < An.




Solutions
1.1. n=3. Let S = 1 + 22 + x3. It is easy to see that the function f(t) = s%

[
Apply the Jensen inequality to it:

f(I1)+f(§2)+f(l’3) >f(:v1+9;2+x3> —f<§) _%.

is convex on the interval [0;.5).

We are done.

n = 4. This inequality is cyclic. Write down the values of x;’s successively at the vertices of a square. Then
on each diagonal put an arrow leading from the smaller value to the greater one. Notice that there is a side of the
square with two tails on it. Re-number the z;’s in such a manner that this side becomes z4x;. Now we may assume
that x1 > x3, x4 > x2. For the variables with these restrictions the following inequality is true:

Ty 4 z3 S T + Z3
= .
To+x3 T4+T1 T4+ 2x3 T2+ 21

Indeed, re-write it in the following way:

( 1 1 )> ( 1 1 )
T — > - — .
! To+x3 X4+ T3 K To+T1 Tyt X1

Reduce both hands to a common denominator, cancel x4 — o in both hands (if x4 — 29 = 0, we already have the
equality), and multiply both hands to the product of denominators. We obtain the evident (since z1 > x3) inequality

z1(z2 + z1) (s + 1) = 23(22 + 3) (24 + 3) -

Use it to prove Shapiro’s inequality:

T1 T2 T3 T4 1 T2 T3 Ty T1+ T2 X3+ T4 1
+ + + P> + + + = + =ata " =2.
To+T3 xT3+x4 Ty+xT1 T+ T2 Ty+T3 x3+T4 To+T1 T+ T2 xr3+x4 T+ T2

n =5. Notice that the function f(¢) = 1/(S — t) is convex on the interval [0;.5). So we can apply the Jensen
inequality with n = 5:

a1 f(t1) + asf(t2) + asf(ts) + asf(ta) + asf(ts) = flarts + asta + asts + asts + asts), (2)

where a; > 0, > a; = 1. Take a; = %, and let t; = x; + ¢;—1 + ®;—2,i =1, ..., 5 (we assume that the variables are
enumerated cyclically: xg = x5, x_1 = x4). Then f(t;) = Sit’_ = m, and it means that the left-hand side of
inequality (2) coincides with the left-hand side of Shapiro’s inequality. Now consider the right-hand side of 2:

1 1 S

S — Z?Zl ait; S — Z?:l G(vit+ w1+ wi0) S — 2?21 xi(r; + i1 + Ii—2)'

Open the brackets. It is easy to see that the denominator is the sum of pairwise products of the set of variables
x;. Since the initial inequality is homogeneous, we may assume that S = z; + 2o + 23 + 4 + 5 = 1. Now the
right-hand side of inequality (2) is the inverse number to the sum of pairwise products of the variables x;, satisfying
one condition z1 + x2 + 3 + x4 + x5 = 1. The right-hand side reaches its minimum when the sum of pairwise
products reaches its maximum. It is well-known that for it all the variables should be equal. But the right-hand
side equals 5/2 in this point.

The analogous proof also works for n = 4.

n =6. Proceed as above. The function f(t) = 1/(S —t) is convex on the interval [0; S). So we can apply the

Jensen inequality with n = 6:
6 6
Z Clif(ti) = f (Z aiti) .
i=1 i=1

Let a; = %, ti=x;+xi—1+xi—2+x-3,0=1,..., 6 (we assume that the variables are enumerated cyclically:

To = T, T_1 = T, T_o = x4). Then f(t;) = ﬁ = m, and this means that the left-hand side of the

inequality (1.1) coincides with the left-hand side of Shapiro’s inequality. Now consider the right-hand side of (1.1):
1 1 S

S— Z?:1 a;t; S — Z?:1 %(CCZ + 21+ Timo + T-3) 52 — Z?:1 (@ + xim1 + Tima + :17,-_3).



Open the brackets. It is easy to see that the denominator is the sum of pairwise products of the variables x;’s but the
products 124, X225, and x3x6. This sum can be re-written as (z1+x4) (z2+x5)+ (21 +24) (x3+26)+ (22 +25) (T3 +26).
Denote A = x1 + x4, B = 29 + x5, C = 23 + x6. The right-hand side of (1.1) can be re-written as

A+B+C 3)
AB + BC + AC

Since the initial inequality is homogeneous, we may assume that S =1 +zo + 23+ x4 +25 = A+ B+C = 1. Now
it is clear that the expression (3) is greater than or equal to 3, since (A + B + C)? > 3(AB 4 BC + AC). miStiSiisS

Remark. Unfortunately, this method does not work for n > 6.
Second solution. Apply the Cauchy-Bunyakovsky inequality to the sets of numbers

T T2 Tn
, T, and
\/LL‘Q + x3 \/{E3 + x4 T+ o
\/xl(z2+a:3), \/xg(ac3+:c4), ce Tp(T1 + 22)
We obtain
1 To Ty (v + 20+ ... +2,)?

+ + ...+ > .
To+x3 T3+ T4 21+ a2 xy(we+x3) +22(w3 +T4) + ..+ 2p(T1 + 22)

Use Mordell’s inequality (problem 2.1). When n < 6, it gives us that the right-hand side of this inequality is
greater than or equal to n/2.

1.2. a) [22] Take as x1, 9, ..., x99 numbers
1+ be, 6e, 1+ 4e, 5e, 1+ 3¢, 4e, 1+ 2¢, 3e, 1+¢, 2e,
1+ 2¢, g, 1+ 3¢, 2e, 1+ 4e, 3e, 1+ be, 4e, 1+ 6e, He.
Then f(z1,...,29) < 10 — &2 + c3 < 10 for some ¢ and small enough .
b) [27] Take as z1, x2, ..., 14 numbers

14+7e, Te, 1+4¢e, 6, 1+¢, be, 1, 26, 1+¢, 0, 1 +4e, &, 1+ 6¢, 4e.

Then f(1,...,290) < 7 — 2e2 + ce3 < 7 for some ¢ and small enough &.
An alternative example [24]:

0, 42, 2, 42, 4, 41, 5, 39, 4, 38, 2, 38, 0, 40.
¢) [10], [18]. Take
0, 85, 0, 101, 0, 120, 14, 129, 41, 116, 59, 93, 64,71, 63, 52, 60, 36, 58, 23, 58, 12, 62, 3, 71.
Alternatively, in [3]| the following example is given:

32, 0, 37, 0, 43, 0, 50, 0, 59, 8, 62, 21, 55,29, 44, 32, 33, 31, 24, 30, 16, 29, 10, 29, 4.

1.3. The statement of the problem is published in [13]. We present here a short nice solution.
Let z1 > 9 > --- > x, > 0. Observe that the product of n fractions m is equal to 1. Then by Cauchy
inequality we conclude that

n n
Z Tk + Th41 S = Z Th+1 + Th42
= - —_— .
o Tht1 T T2 o Tht1 t T2

Hence
n

n
T Tr42 _ LE+1
Z z ; Z T+ Thg1 )

T Tkl t Tht2 i Thetl t Tht2

Now we will apply the rearranging inequality: Let a1 > ... > a, and by > ... > b, be two sets of numbers. Then
for each permutation ki, ..., k, of numbers 1, ..., n the following inequality holds

a1by + agbs + ... anby = arby, + asbi, + ... anby, = a1b, +azby_1 + ... a,b1.



Use the rearranging inequality twice

n z n—2 z x z
k k n—1 n
E —— = + + =
o Tkl Tet2 ST Tepl T Ttz Tn T T T1F T2 (%)
=2 x x x
2 Z k n—1 n >
D Tkl T T2 Tt T2 Tp T T (e
- T
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T+ T
o Tk Tt
The inequality (*) here is the rearranging inequality for two pairs of numbers: z,,_1 > x, and xlﬁ > m; and
n
. . Kok s . . . 1 1 1
the inequality (**) is the rearranging inequality for the sets x1, xa, ..., ©,—1 and i Es Tt ) TooTEn that

have opposite ordering.
Thus

n n

n
T T Th+1
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For the decreasing set x; the solution is similar because we do not use the order of the variables When we apply the
Cauchy inequality, and for the rearranging inequalities we need the fact that the sets z; and have different

x; +:Jc
orderings.
1.4. (3] Tt is easy to see that f,yo(x1,2a,...,2n, T1,22) = fu(x1,22,...,2,) + 1. Therefore if f,,(z1,22,...,2,) <
’I’L/2, then fn+2(x17x27 ceey Ty 1’1,.’32) < (TL + 2)/2
1.5. [3] Assume that fp,(21,72,...,2,) < 5. For each k let us calculate the difference
1
fmr1(Z1, - Ty Ty Thot 1y - -+ Tm) — [ (@1, T, oo Ty) — 5=
_ Tk—1 Tk . e S (@) — xp—1) (T — Tht1)
2x, Tk +Tpp1 T+ Tpp1 2 2wk (x) + Trg1) )

If (z — zp—1)(xk — Tp41) < 0, then

m+1

2

and we are done. If n is odd, we can always choose k such that (ry — xx—1)(zr — zr11) < 0 because otherwise the
product of the (odd number of) inequalities (z) — zx—1)(Xx+1 — x) < 0 for all k is

fn+1(x17x2a oy Tk They Thet-1y - - - 7x'm) <

(zg — x1)2(m3 — x2)2 N xm,1)2(x1 — xm)2 <0.

Thus if for odd n the Shapiro inequality is wrong then for n+1 it is wrong, too. It remains to apply the statement
of the previous problem.

1.6. [7, 8]
1.7. [28] Let yp = 2 + xk+1. Then

r1+x To+x Tnt+ - - +
1 4, %2 5, 4 InTIs Z Yk — Yk+1 T Ykt2 Z Yk Z Yetz S
Tot+T3 X3+ T4 itz Yk+1 ooy Ykl Ykl

because by Cauchy inequality each sum is at least n.

1.8. The statements a), b) were published in [21].
a) Il This short proof is taken from [8].
Denote for brevity a = (a1, as,...,ay), € = (£1,22,...,2Zy), and v = (=1,1,-1,1,...,=1,1).

Observe that
of 1 Tp_2 Tp_1

x )
Oxy, Trt1 + T2 (Te—1+2K)? (g + Trg1)?

It is easy to see that we have an identity

f(x + tu) +tz k;i

Since a is the minimum point, we have
of

al'k

o5-—(a) =



Therefore f(a+tu) = f(a) if all the coordinates of the point a + tu are positive. Hence a + tu is the minimum point
of the function f as well. Hence,

of
—(a+tu) =0.
Dy (@ T 1)
So
1 af—2 ap—1 _
_ - =0
ap1+apy2 (ag-1 +ar)?  (ak + apgr)
and
1 ag—2 +t(-1)"2  ap_q + (-1 0
o1 F Aot (a1 + ax)® (ak + ag+1)? '
Subtract the first equality from the second:
t t _0
(ah-1+ax)?  (ap+apen)?
Therefore,
k-1 + ar = ak + ap41.
and hence
ap] =a3 =0a5 = *** = Qp—1 and Ao = Q4 =Ag = """ = QUp.
Thus, f(a) =n/2.
b) This short proof is taken from [7]. Denote for brevity a = (a1, az2,...,as), = (T1,T2,...,%), Y =
(y1, Yo, ... ,yn), z = (21, 22y ey Zn), where yp = 2 + 2111 and 2z, = 1/yn+17k~

Set

—

n—

T T Ty x T
S@)=—"—+ 24 oyl m N
To+ T3 X3+ X4 Tn+2x1 X1+ T2 o Jk+1

Observe that
of _ 1 Tk—2 Th—1

—A\T .
Oxy, Tht1 + Thpe  (Th—1 + k)% (Tk + Tpg1)?

It is easy to check the following identities:

a c
a n c_a +c 2 + d2
b d b+d }+ I
b d
Hence,
LTk—2 n Tk—1
Tk—2 Th-1  _ Th—2 + Tk—1 (g1 + )% (T + Tpg1)? _
Tp—1+ Tk Tk + Try1 (@p—1 +2r) + (T + Try1) 1 + 1
Th—1+ 2Tk Tk + Tkt
of
_ Y2 Fn—k T Oxy, (@)
Uk—1+ Yk Zn—kt1 + Zn—kt2
Therefore,
9 .
- 8xk

25(z) = S(y) + S(z) =

k=1

If  is a minimum point then we have 25(z) = S(y) + S(z). Hence S(z) = S(y) = S(2).
Let u:= (21 + 22 + - - - + x,)/n. Consider the transformation M : R" — R™ defined by

Zn—k+1 T Zn—k+2

. 1+ Ty To+ X3 Ty + 21
M(:c)_< - B, )
Let My (z) be its k-th iteration. Observe that S(z) = S(y) = S(M(z)) = --- = S(Mg(x)). It is clear that
klim My (z) = (u,u,...,u). Then
— 00



c) [16], [7, 8]

1.9. These solutions are taken from [3].

uiS) The problem was presented at the Third USSR mathematical olympiad, 1969. Probably it was originally
published in [14].

Let x;, be the maximal number among z1, xa, ..., Tn; T;, be the maximum of the two next numbers after x;,
(i.e. of x;, 41 and x;, 42); x;, be the maximum of the two next numbers after z;,, and so on. We will continue this
sequence till the step number k when the maximum of the two next after z;, numbers is z;, .

It is clear that k > n/2. We have

T T2 Tn Liy Liy Ly,

+ +...+ + 4+ ...+ .
To+x3 X3+ T4 x1+ 29 2z, 2z, 2z,

The last expression is at least k/2 by the Cauchy inequality therefore it is at least n/4.

m,k::l’ 2,...,”, intheform

b) Rewrite each of the fractions

1 1
Tk Tkt 5Tk41 | 3Th41 T The2

Th41 + Tht2  Thtl T Tht2 Tht1 + Tht2

We obtain 2n fractions. Combine them by pairs: the first and the last, the second and the third, the fourth and the
fifth and so on. Now estimate the sum of each pair from below

(h + Tpq1) (Trg1 + Trg2)
_ (1 4 kTR 2) Th + Thy1 -3, | Tk + Thy1 .
2w+ Tt1)? ) Thr + Tha2 Tyl + Thyo

Since the product of n numbers 4/ i;iig, 1/ igiﬁi, el % equals 1, then by the Cauchy inequality their sum
is at least n. Therefore f(z1,...,2,) > Von—n= (\/5 — 1)n.

%xk + Tk+1 n Tr + %$k+1 S 2\/(%% + 2pq1)(zr + %$k+1) _

=
Tk + Tp41 Tyl + T2

¢) As in the previous solution rewrite each of the fractions m, k=1,2,...,n,in the form
Ty T+ BT N Brpy1 + Trgo
= kAL TR
Tttt Tht2  Thtl + Thi2 Tht1 + T2

where a and § are parameters chosen to make the equality true. For such a choice of o and 3 we need 8+ af = «,
ie. B =a/(a+1). Then

Tk + Prrs ta. Bz + g4 S 9 a(xk + Bxiy1) (B + Tryr) _
Th+1 + Thto Tk + Tpt1 (Tk + Tpy1) (Tr1 + Trg2)

_9 aﬂ(tﬂk + .%'k+1)2 + (5 — I)kaxkﬂ > 9, JafB T + Tr41 _ 20 . Tk + Tht1
(g + Tpt1) (Trg1 + Thg2) V Tht1 +Th+2 Va+1 Tht1 + Thyo
Therefore

x T Ty T 2 T+ To+x T, +T
1 + 2 +.F n—1 + n 2 \/ 1 2+\/ 2 3++ n 1 —an >
To+x3 T3+ x4 T, +T1 X1+ T2 Vvo+1 T2 + X3 T3+ 2y \/ 1+ X9

- 2a ( 2a )
n—on=|——aln.
va—+1 va—+1

For a = 5 we have ¢ = 5/12.
Remark. This is a good approximation.The expression g(«) = \/i"ﬁ — « reaches its maximal value at «

o ||

ap ~ 1.1479 (this is a root of the cubic equation ¢’(«) = 0), and the minimum value is g(ag) ~ 0.4186. For a =
we have g(a) = 3 ~ 0.416.

1.10. [9]. Set yx = zr+xk4+1. We need to prove that



or

! 26]12ka — Yk+1 2
k=1 Ykl

We suppose that the parameter g, will be chosen later. Since
2q5ak — Y1 = (@nan — Tei1) + (Ghzr — Tyo) 2 0,

by the Cauchy-Bunyakovsky inequality for sets

[2q2xy —
{ ZnTh Ykl } and {\/(QQ%J?k*ka)ykﬂ}
Yk+1

(i (2qp 21 — yk+1)>2

k=1

we have

i 202y, — Yrt1

/ n N
k=1 Yr+1 > 2627k — Ykt 1) Yt
k=1

So it suffices to prove that

n

n 2
A= (Y — ) ) nlad = DY (@0~ )i = (e - DB

k=1 k=1

n n
Since > yr =2 > xx, we have
k=1 k=1

3

A:(‘ﬁ_l) Yk »

n = n n n
B=2¢2Y wiyki1— D Ui =202 Y urvks1 — (G2 +1) D> _vP-
k=1 k=1 k=1 k=1
So it remains to prove that
n 2 n n
(gn—1) (Z yk) > n(qu > vy — (2 +1)Y yi)
k=1 k=1 k=1

Transform the left-hand side using the relation
(o) =Xt~ w
k=1 i<k

The inequiality (5) will be transformed to

n> (e = ki)’ = (1 - iz) > (i —ww)*.
k=1

In i<k

By the Cauchy-Bunyakovsky inequality

n k—1 =, 2 1 1
_ 2 2
> Wk — yer)? Z —yjr1)? > - (Z(yj - yj+1)) =% _j(yl k)™ 2 i =)™
k=1 Jj=1 j=i
Hence .
n(n—1) 1
Z v = yren)® = — D (i — )
k=1 i<k
Sowecantakel—q—” ﬁ,i.e. qn:\/ﬁﬁ>l.

Remark. When n tends to infinity, the values ¢, which are found above tend to 1.
b)

1.11. (a) Denote k; := ;41/2;. Then

1 1 1 1 1 1
S = + ot > + o ——
ki(ka +1)  ko(ks+1) kn(k1 +1) 7 ai(an+1)  az(an—1+1) an(a; +1)




(b) The inequality holds because

Aian41—i—1
1 4 1 _ 1+ (ta)(1tanti—i) - b:
ai(Gnt1—i +1)  ant1-i(a; +1) ;i y1—; -

where the latter inequality holds because (14 a;)(1 + ani1—i) = (1 + /GiGnr1_1)>.
(c) The first inequality 25 > g(In(a1a,)) + g(In(azan—1)) +- - -+ g(In(ana1)) holds because g(z) is less than both
e ™ and 2(e” + e/ 2)~1. The second inequality holds by the Jensen inequality because g is convex.

(d) [Dr]

2.1. a) [20]
For n = 4 we need to prove that

(1’1 + 19 + T3 + $4)2 2 2I1I2 + 21721’3 -+ 2173:64 + 2I’4I1 + 4:61133 + 4582174 .

This follows from the inequality
o2 a3 4 2%+ 2k > 2003 + 2001y

For n = 3 and n = 5 re-write the inequality. We need to prove that

(n—1)(a1 +ag+ ...+ a,)? >2n2aiak. (6)
i<k

Indeed, notice that the Cauchy—Bunyakovsky inequality applied to sets a1, asg,...,a, and 1,1,...,1 gives us:
n(ad +a3+...+a2) = (a1 +as + ... +an)*
Now we have

n(ay +ag + ...+ a,)? :n(a%+a§+...+ai)+2n2aiak > (aq +a2+...+an)2+2n2aiak,
i<k i<k
which implies (6).
Now assume that n > 6. We may suppose that x3 > x1 and x5 > x2 (e.g. make a cyclic shift of variables such
that 3 becomes the maximum). For r = 1, 2, and 3 denote by a, the sum of all z; such that £k = r (mod 3) and
k <n. Then z1 + x2 + ...+ x, = a1 + a2 + as. Hence by (6) we have

(r1+ 22+ ...+ ;vn)Q = (a1 +az+ ag)2 > 3(ara2 + asas + asa;) =3 - Z T;T .
(i=k)/3
Set

A= Z z;zr and B::sz(xk+1+xk+2).
(i—k)/3 k=1

e for n =0 (mod 3) all the summands of B are contained in A;

e for n =1 (mod 3) the sum A contains all the summands of B except z,z1, but x,21 does not exceed x,x3;

e for n =2 (mod 3) the sum A contains all the summands of B except z,_121 and z,x2, but these summands
do not exceed x,_1x3 and x,x3, respectively.

We have A > B because

Hence .
(k1 422+ ...+ .Z‘n)Q >3A>3B= 3Z$k(l‘;€+1 + Tpq2).
k=1
In order to show that min {%, 3} is the sharp constant for n < 6 weset z1 =22 =... =z, =1 and for n > 6 we
set vty =29 =2z3=landzy=25=... =2, =0.

b) The case n < 6 is trivial. For n = 6 the equality is achieved when z1 + x4 = 2 + x5 = 23+ x6. For n > 6 the
equality is achieved for the sets of form (¢,1,1,1 —¢,0,...,0), where ¢ € [0, 1], and their cyclic shifts.

2.2. [20]
For n =4 and n = 7 this is a particular case of (6).
For n = 5 the inequality coincides with > (zx — 2zx12 + T14)? > 0.
For n = 6 the inequality follows from x% + x% +...+ x% > 2x124 + 22915 + 22376.
For n = 8 open brackets in the following corollary of the Cauchy—Bunyakovsky inequality

4x? + a2+l +22) > (2 + 2o + 23+ 24)2

‘We obtain
3(33% + x% + 0:§ + :cZ) > 2(x1xe + w123 + T1X4 + T2T3 + ToTy + T3T4).



Hence
3(1‘1 +xo + 23 + 374)2 > 8($1$2 + T123 + X124 + T2x3 + Tox4 + JI3$4), (7)

This is the required inequality for n = 8.
Now assume that n > 8. We may suppose that x4 > x1, ©4 > 22, and x4 > 3. For r = 1, 2, 3, and 4 denote by
a, the sum of all xy, such that £ =r (mod 4) and k < n. Then z1 +x2+...+x, = a1 + as + a3 + a4. Hence by (7)

3(xy + 29+ ... +x,)? =3(a1 + ag + a3 + as)? > 8(araz + azaz + azas + asar) = 8- Z TiT .
(i=k) 74
Set

A= Z zixr and B = Zxk(wk+1 + Zpto + Tpis).
(i—k) /4 k=1

We have A > B because

e for n =0 (mod 4) all the summands of B are contained in A;

e for n =1 (mod 4) the sum A contains all the summands of B except x,z1, but z,21 does not exceed x,x4;

e for n =2 (mod 4) the sum A contains all the summands of B except =,,_121 and x,x2, but these summands
do not exceed x,,_1x4 and x,x4;

e for n = 3 (mod 4) the sum A contains all the summands of B except z,_2%1, p_122 and x,z3, but these
summands do not exceed x,_o%4, Ty_124, and T, x4.

Hence
n

3z +x2+...+ xn)2 >8A>8B = 8Z$k($k+1 + Xy + $k+3>~
k=1

2.3. a) Cf. [11]. By the Cauchy—Bunyakovsky inequality and Problem 2.2 we have

1 T Tp_1 T (r1+ 22+ ... + 22
+ +or - > >
To+ 23+ 24 T3+ Tg+Ts Tn+x1+22 21+ 22+x3 D Tp(Th1 + Thro + Thys)

c,o.\ 3

b) 777
2.4. [1, Problem 187]. We may assume that z; < z3. Set

S=r14+x2+...42,, S1:=x14+23+..., Soi=x04T4+....
Then S7 + 5% > (S1 + S2)?/2 = S?/2. Hence

SZ

5 252—512—5’22:2 Z T;Tk- (8)

(i—k)2

If n is even, then the last sum contains all the summands of form xzk41. If n is odd, then the summand z,x; is
missing, however the sum contains a greater summand =, z3. So

52
7 2 2(3313)2 + ToX3 + ...+ anl‘l).

2.5. See the solution of 1.3 up to the inequality (4).

2.6. Induction on n > n = 4. Denote the left-hand side by L,,. We have

X X X X
Li= 1+ 8 2+ 4:a+a’1>2.
To + T4 xr1 + T3

Let us prove the inductive step. We may assume that x,, 1 is the minimal of all x;’s. Now remove the last summand
from L1, and then decrease two others. We obtain

T1 Tn Z1 T
— .+ > o —"
anrl + T2 Tp—1 + xn+1 T + T2 Tn—1 + T

Ty =x2=1, x3=1, $4=t2, cey xn:tn_Q.

When t — +0, the first two summands tend to 1 and the remaining tends to O.
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2.7. [10]. Set S := =z + 22 + ... + z,. Use the Cauchy-Bunyakovsky inequality for sets {ﬁ%ﬁi:} and
{(zx + xp+1)(zk + Try2)}. We obtain

1+ To  To+ T3 Tpno1+ Tn xn+x1> 4(xy + a2+ ..+ 1)

r1+x3  Totms | Tpo1t T x"+x2/i(mk+xk+1)($k+xk+2).
k=1

So it suffices to prove that

n n n n
5% > Z(xk + Tpq1) Tk + Thgo) = Z z3 +2 Z TpTp41 + Z T2
k=1 k=1 k=1 k=1

This can be shown by opening brackets in the left-hand side, because for n > 4 all the summands zpxi4+1 and
TkTpyo, where k =1, 2, ..., n, are different.

In order to show that the constant 4 is sharp, take z, = a* ' for k =1, 2, ..., n— 1 and z, = a" 2. When
a — 00, the first n — 3 summands tend to 0 and the remaining summands tend to 1, 2 and 1.

Using the Cauchy—Bunyakovsky inequality as it is done in the solution of the next problem, the reader will easily
find another solution of this problem reducing it to the inequality from Problem 2.4.

2.8. [6]. Use the Cauchy-Bunyakovsky inequality for sets {17’“} uiS {xk(zr—1 + Tr12)}. We obtain

Tk—1+Tky2

2 W B Tn1 T, - (r1+ 22+ ... +2,)?
Tpt+xz i +xy  Xpotxy Ty +xo (TiTo+Toxz ...+ Tpxy) + (2123 + Toxg ... F 2pT)

So it suffices to prove that

52 > (129 + 203 + ...+ xpx1) + (123 + X244 + ... + THTe) =: 3Y]
where S :=x1 + 29 + ...+ x,. Set

Si=x1+xz4+..., So=xz9+w5+... and Sz3=z3+T6+....

Then S = S; + S + S3 and S? + 53 + 57 > 5?/3. We may assume that x3 > z; and 3 > x5. Notice that

52 >

N | W

(=87 —S3—-53)=3 ) wm,=:3Z
(i—k)/3

e If n =0 (mod 3), then all the summands of Y are contained in Z.

e If n =1 (mod 3), then Z contains all the summands of Y except x,z1, but this summand does not exceed
ITns.

e If n =2 (mod 3), then Z contains all the summands of Y except z,_12; and z,z2, but these summands do
not exceed x,_1x3 and r,x3.

Hence S? > 3Y > 3Z, which proves the initial inequality.

In order to show that the constant 3 is sharp, take x), = a* ' fork=1,2,...,n—2and z,_; = 2, = 1. When
a — 0, the first and the last two summands tend to 1, while the remaining summands tend to 0.

2.9. [5]. The inequality is obtained by summing two inequalities of 2.8 (for the direct and the opposite order of
variables).

In order to show that the constant 6 is sharp, take x = ak~1 for k = 1,2,...,n—2and x,_1 =z, = 1. When
a — 0, the last four summands tend to 1, 2, 2, 1, respectively; the remaining tend to 0.

2.10. This is conjectured in [19].
The following proof is due to P.MiloSevi¢ miS M. Bukié, participants of the Conference.
This inequality can be represented as sum of two inequalities for n = 2004 — the inequality from Problem 2.8
and the inequality
ST T
T+ X4 To + Ts Ty + T3

Prove the last inequality. For n = 3m it is the sum of three inequalities:

x Ty Tp—2
+ +.. .z
r1+x4 T4t T7 Tn—2+ T1
1) Ts Tn—1
+ >
To + T5 Ts + X8 Tp—1+ T2
x3 Te Tn

+ o>
T3 +xs T+ Tg Tn + T3

11



Each of these inequalities can be re-written as

1 1 1

Tha 1tam T Tiam

>1 where ajas...a,, = 1.

This can be shown by induction. The base m = 2 is the following inequality:

! + L =121
ldar  1+2L 77
To prove the induction step, let us check that
1 1 1

> .
T+0 " 14e¢” T+be
This can be done directly by reducing to a common denominator and opening brackets.

Here is the proof of A. Khrabrov. Let us prove that

T1+T2 | T2+ T3 T3n + T1
Z = /2
1+ T4 T2HTs T3p + T3
Set x4k := x and, for r = 0,1, 2,
3k 3k4r+1
S, = g T3htr, Xy = é, and Y, := g S L S
o1 oy T3kt T T3k434r iy Toktr t T3k434r

First we prove that X, > 1. Consider only the case » = 0. Then

X055 > Xo <Z x5, + Z$3k$3k+3> = Xo (Z T3k (T3 + $3k+3)> > 53,
k=1 k=1

k=1

where the last inequality holds by the Cauchy-Bunyakovsky inequality. So Xy > 1.
Now prove that Y,. > S,11/S5, (we set S3 := Sp). Consider only the case r = 0.

n n n
Y5051 2 Yo (Z T3kT3k41 + Zx3k+1ﬂ$3k+3> =Y (Z T3k+1 (3K + 933k+3)> > 5%,
k=1 k=1 k=1

where the last inequality holds by the Cauchy—Bunyakovsky inequality. So Yy > S1/50.
Summing up all the proved inequalities we obtain

S S S
Z=Xo+X1+Xo+Yo+YV1+Ye 23+ 42420 >
So ST S
In order to show that the constant 6 is sharp, take z, = 2o = 23 = 1, 1, = o™ **! for k =3, 4, ..., n. When

a — 0, the first and the second summands tend to 2, the third and the last tend to 1, and the remaining summands
tend to 0.

2.11. This proof is due to A. Khrabrov. Set S = z14+22+... 42, and T = Y x;x%. By the Cauchy—Bunyakovsky

Gy
x
inequality for sets {k} and {zg(xp—1 + Tr4+3)} we have
Tk—1 + Thk+3
N B Tp_1 T, - (1 + 22+ ... +2,)2
Tp+zy x1+T5 Tpot+ Ty Tpog+ w3 (21T + 20wz ...+ 2umy) + (2124 + D225 + ..+ Tpas)

So it suffices to prove that
S? > A(x120 4+ Tox3 4 ...+ Tpxy) + A(T174 + Toxs 4 ...+ TpT3).
In the solution of problem 2.4 we proved that S? > 4T, see (8). So it suffices to prove that
T > (129 + x0w3 + ... + Tpx1) + (2124 + o225 + ... + TpT3). (9)
Since n is even, all the summands of the right-hand sum are contained in the left-hand sum.

In order to show that the constant 6 is sharp, take z, = a* ' and k=1,2,...,n—3 and zy_9 = ,_1 = T, = 1.
When a — +0 the first summand and the three last summands tend to 1, and the remaining summands tend to 0.
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2.12. [14]. Note that a® — ab + b* < max{a, b}>.
Let x;, be the maximal number of 1, xs, ..., x,. Let x;, be the maximal number of x;, +; and x;,+2. Let x;, be
the maximal number of ;, 1 and z;,,2, and so on. There exists a number k such that x;,,, = z;,. Hence

n 2 2
x z; n—+1
k > Yo>k>
22— Tpa1Theo + 22 o 7 x2 T 2 I
=1 k+1 k+1Lk+42 k+2 j=1 ij+1

where the latter inequality holds because k > n/2.

In order to show that the constant [”—*1] is sharp, take xx = 1 for odd k and z = 0 for even k. Then the

2
left-hand side is [”T'H]
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