
Shapiro’s inequality

A. Khrabrov

1 Shapiro’s inequality

In October, 1954 the American Mathematical Monthly published the following problem of Harold Shapiro
Prove the following inequality for positive numbers x1, x2, . . . , xn:

x1

x2 + x3
+

x2

x3 + x4
+ . . . +

xn−1

xn + x1
+

xn

x1 + x2
>

n

2
, (1)

the equality holds only if all the denominators are equal.
In contrast to, say, “Kvant” magazine, it was allowed to publish problems in the Monthly, which were not solved by the

proposer, and the readers had not been informed about this nuance. This time the situation was exactly like that. The author
had a solution for partial cases n = 3 and 4 only.

In the following problems we can replace the condition that all the xk’s are positive with the condition that all the xk’s
are nonnegative and all the denominators are nonzero. Indeed, if the inequality is proven for positive numbers, then it is not
difficult to deduce the inequality for nonnegative numbers (and nonzero denominators). Let

f(x1, x2, . . . , xn) =
x1

x2 + x3
+

x2

x3 + x4
+ . . . +

xn−1

xn + x1
+

xn

x1 + x2
.

1.1. Prove the inequality (1) for n = 3, 4, 5, 6.
1.2. Prove that the inequality (1) is wrong

a) for n = 20; b) for n = 14; c) for n = 25.
1.3. Prove the inequality (1) for monotonic sequences.
1.4. Prove that if the inequality (1) does not hold for n = m, then it does not hold for n = m+ 2.
1.5. Prove that if the inequality (1) does not hold for n = m, where m is odd, then it does not hold for all n > m.
1.6. Prove the inequality (1) for n = 8, 10, 12 and for n = 7, 9, 11, 13, 15, 17, 19, 21, 23. Due to the statement of
the previous problem it is sufficient to prove the inequality only for n = 12 and n = 23.
1.7. Prove that f(x1, x2, . . . , xn) + f(xn, xn−1, . . . , x1) > n .

1.8. Assume that the function f(x1, x2, . . . , xn) has a local minimum in the point (a1, a2, . . . , an), a1, a2, . . . , an > 0.
a) Prove that f(a1, a2, . . . , an) = n/2 if n is even.
b*) Prove the same statement for odd n.
c) Use the statements пїЅa) and b) to prove the inequality for n = 7 and n = 8.

1.9. Prove the inequality f(x1, x2, . . . , xn) > cn for the following values of the constant c:
a) c = 1/4; b) c =

(√
2− 1

)
; c) c = 5/12.

2 Useful and related inequalities

Prove the following inequalities assuming that all the xk’s are positive. Prove that the constants printed in bold can not
be decreased (for each n).

2.1. Mordell’s inequality.

a)
( n∑
k=1

xk

)2

> min
{n

2
,3
}
·
n∑
k=1

xk(xk+1 + xk+2).

b) Find all n-tuples x1, x2, . . . , xn such that the equality is achieved.

2.2.
( n∑
k=1

xk

)2

> min
{

n
3
,
8
3

}
·
n∑
k=1

xk(xk+1 + xk+2 + xk+3).

2.3. пїЅa) Prove that for n 6 8

x1

x2 + x3 + x4
+

x2

x3 + x4 + x5
+ . . .+

xn−1

xn + x1 + x2
+

xn
x1 + x2 + x3

>
n

3
.

b) For which n > 8 this inequality is also true?
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2.4. (x1 + x2 + . . .+ xn)2 > 4(x1x2 + x2x3 + . . .+ xn−1xn + xnx1) ; n > 4.

2.5.
n∑
k=1

xk
xk+1 + xk+2

>
n∑
k=1

xk+1

xk + xk+1
.

2.6.
x1

xn + x2
+

x2

x1 + x3
+ . . .+

xn−1

xn−2 + xn
+

xn
xn−1 + x1

> 2 ; n > 4.

2.7.
x1 + x2

x1 + x3
+
x2 + x3

x2 + x4
+ . . .+

xn−1 + xn
xn−1 + x1

+
xn + x1

xn + x2
> 4 ; n > 4.

2.8.
x1

xn + x3
+

x2

x1 + x4
+ . . .+

xn−1

xn−2 + x1
+

xn
xn−1 + x2

> 3 ; n > 4.

2.9.
x2 + x3

x1 + x4
+
x3 + x4

x2 + x5
+ . . .+

xn + x1

xn−1 + x2
+
x1 + x2

xn + x3
> 6 ; n > 6.

2.10.
x1 + x2

x1 + x4
+
x2 + x3

x2 + x5
+ . . .+

x2004 + x1

x2004 + x3
> 6 .

2.11.
x1

xn + x4
+

x2

x1 + x5
+ . . .+

xn−1

xn−2 + x2
+

xn
xn−1 + x3

> 4 , where n > 5 is even.

2.12.
n∑
k=1

x2
k

x2
k+1 − xk+1xk+2 + x2

k+2

>

[
n + 1

2

]
.

3 After the intermediate finish

1.10. a) Prove that for each n there exists qn > 1, such that for all real x1, x2, . . . , xn ∈ [ 1
qn

; qn] the inequality (1)
holds.

b*) Is it possible to choose q > 1, such that for all integers n > 0 and for all xi ∈ [ 1q ; q] the inequality (1) holds?

1.11. Let S = f(x1, x2, . . . , xn) be the left hand side of Shapiro’s inequality. Denote by a1, a2, . . . , an the numbers
x2/x1, x3/x2, . . . , xn/xn−1, x1/xn, arranged in increasing order.

a) Prove that S > 1
a1(1+an) + 1

a2(1+an−1)
+ . . .+ 1

an(1+a1)
;

b) Let bk =


1

akan+1−k
, akan+1−k > 1

2
akan+1−k +√akan+1−k

, akan+1−k < 1.
Prove that 2S > b1 + b2 + . . .+ bn;

c) Let g be the maximal convex function that does not exceed both functions e−x пїЅ 2(ex+ ex/2)−1. Prove that
2S > g(ln(a1an)) + g(ln(a2an−1)) + . . .+ g(ln(ana1)) > ng(0).

d) Prove that for each λ > g(0) there exist a nonnegative integer n and positive numbers x1, x2, . . . , xn, such
that S 6 λn.
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Solutions

1.1. n = 3. Let S = x1 + x2 + x3. It is easy to see that the function f(t) = t
S−t is convex on the interval [0;S).

Apply the Jensen inequality to it:

f(x1) + f(x2) + f(x3)
3

> f

(
x1 + x2 + x3

3

)
= f

(
S

3

)
=

1
2
.

We are done.

n = 4. This inequality is cyclic. Write down the values of xi’s successively at the vertices of a square. Then
on each diagonal put an arrow leading from the smaller value to the greater one. Notice that there is a side of the
square with two tails on it. Re-number the xi’s in such a manner that this side becomes x4x1. Now we may assume
that x1 > x3, x4 > x2. For the variables with these restrictions the following inequality is true:

x1

x2 + x3
+

x3

x4 + x1
>

x1

x4 + x3
+

x3

x2 + x1
.

Indeed, re-write it in the following way:

x1

( 1
x2 + x3

− 1
x4 + x3

)
> x3

( 1
x2 + x1

− 1
x4 + x1

)
.

Reduce both hands to a common denominator, cancel x4 − x2 in both hands (if x4 − x2 = 0, we already have the
equality), and multiply both hands to the product of denominators. We obtain the evident (since x1 > x3) inequality

x1(x2 + x1)(x4 + x1) > x3(x2 + x3)(x4 + x3) .

Use it to prove Shapiro’s inequality:

x1

x2 + x3
+

x2

x3 + x4
+

x3

x4 + x1
+

x4

x1 + x2
>

x1

x4 + x3
+

x2

x3 + x4
+

x3

x2 + x1
+

x4

x1 + x2
=
x1 + x2

x3 + x4
+
x3 + x4

x1 + x2
= a+a−1 > 2 .

n = 5. Notice that the function f(t) = 1/(S − t) is convex on the interval [0;S). So we can apply the Jensen
inequality with n = 5:

a1f(t1) + a2f(t2) + a3f(t3) + a4f(t4) + a5f(t5) > f(a1t1 + a2t2 + a3t3 + a4t4 + a5t5) , (2)

where ai > 0,
∑
ai = 1. Take ai = xi

S , and let ti = xi + xi−1 + xi−2, i = 1, . . . , 5 (we assume that the variables are
enumerated cyclically: x0 = x5, x−1 = x4). Then f(ti) = 1

S−ti = 1
xi+1+xi+2

, and it means that the left-hand side of
inequality (2) coincides with the left-hand side of Shapiro’s inequality. Now consider the right-hand side of 2:

1
S −

∑5
i=1 aiti

=
1

S −
∑5
i=1

xi

S (xi + xi−1 + xi−2)
=

S

S2 −
∑5
i=1 xi(xi + xi−1 + xi−2)

.

Open the brackets. It is easy to see that the denominator is the sum of pairwise products of the set of variables
xi. Since the initial inequality is homogeneous, we may assume that S = x1 + x2 + x3 + x4 + x5 = 1. Now the
right-hand side of inequality (2) is the inverse number to the sum of pairwise products of the variables xi, satisfying
one condition x1 + x2 + x3 + x4 + x5 = 1. The right-hand side reaches its minimum when the sum of pairwise
products reaches its maximum. It is well-known that for it all the variables should be equal. But the right-hand
side equals 5/2 in this point.

The analogous proof also works for n = 4.

n = 6. Proceed as above. The function f(t) = 1/(S − t) is convex on the interval [0;S). So we can apply the
Jensen inequality with n = 6:

6∑
i=1

aif(ti) > f
( 6∑
i=1

aiti

)
.

Let ai = xi

S , ti = xi + xi−1 + xi−2 + xi−3, i = 1, . . . , 6 (we assume that the variables are enumerated cyclically:
x0 = x6, x−1 = x5, x−2 = x4). Then f(ti) = 1

S−ti = 1
xi+1+xi+2

, and this means that the left-hand side of the
inequality (1.1) coincides with the left-hand side of Shapiro’s inequality. Now consider the right-hand side of (1.1):

1
S −

∑6
i=1 aiti

=
1

S −
∑6
i=1

xi

S (xi + xi−1 + xi−2 + xi−3)
=

S

S2 −
∑6
i=1 xi(xi + xi−1 + xi−2 + xi−3)

.
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Open the brackets. It is easy to see that the denominator is the sum of pairwise products of the variables xi’s but the
products x1x4, x2x5, and x3x6. This sum can be re-written as (x1+x4)(x2+x5)+(x1+x4)(x3+x6)+(x2+x5)(x3+x6).
Denote A = x1 + x4, B = x2 + x5, C = x3 + x6. The right-hand side of (1.1) can be re-written as

A+B + C

AB +BC +AC
. (3)

Since the initial inequality is homogeneous, we may assume that S = x1 + x2 + x3 + x4 + x5 = A+B+C = 1. Now
it is clear that the expression (3) is greater than or equal to 3, since (A+B + C)2 > 3(AB +BC +AC). пїЅпїЅпїЅ

Rema r k. Unfortunately, this method does not work for n > 6.
Second solution. Apply the Cauchy-Bunyakovsky inequality to the sets of numbers√

x1

x2 + x3
,

√
x2

x3 + x4
, . . . ,

√
xn

x1 + x2
and√

x1(x2 + x3),
√
x2(x3 + x4), . . . ,

√
xn(x1 + x2) .

We obtain

x1

x2 + x3
+

x2

x3 + x4
+ . . .+

xn
x1 + x2

>
(x1 + x2 + . . .+ xn)2

x1(x2 + x3) + x2(x3 + x4) + . . .+ xn(x1 + x2)
.

Use Mordell’s inequality (problem 2.1). When n 6 6, it gives us that the right-hand side of this inequality is
greater than or equal to n/2.

1.2. a) [22] Take as x1, x2, . . . , x20 numbers

1 + 5ε, 6ε, 1 + 4ε, 5ε, 1 + 3ε, 4ε, 1 + 2ε, 3ε, 1 + ε, 2ε,
1 + 2ε, ε, 1 + 3ε, 2ε, 1 + 4ε, 3ε, 1 + 5ε, 4ε, 1 + 6ε, 5ε.

Then f(x1, . . . , x20) < 10− ε2 + cε3 < 10 for some c and small enough ε.
b) [27] Take as x1, x2, . . . , x14 numbers

1 + 7ε, 7ε, 1 + 4ε, 6ε, 1 + ε, 5ε, 1, 2ε, 1 + ε, 0, 1 + 4ε, ε, 1 + 6ε, 4ε.

Then f(x1, . . . , x20) < 7− 2ε2 + cε3 < 7 for some c and small enough ε.
An alternative example [24]:

0, 42, 2, 42, 4, 41, 5, 39, 4, 38, 2, 38, 0, 40 .

c) [10], [18]. Take

0, 85, 0, 101, 0, 120, 14, 129, 41, 116, 59, 93, 64, 71, 63, 52, 60, 36, 58, 23, 58, 12, 62, 3, 71.

Alternatively, in [3] the following example is given:

32, 0, 37, 0, 43, 0, 50, 0, 59, 8, 62, 21, 55, 29, 44, 32, 33, 31, 24, 30, 16, 29, 10, 29, 4.

1.3. The statement of the problem is published in [13]. We present here a short nice solution.
Let x1 > x2 > · · · > xn > 0. Observe that the product of n fractions xk+xk+1

xk+1+xk+2
is equal to 1. Then by Cauchy

inequality we conclude that
n∑
k=1

xk + xk+1

xk+1 + xk+2
> n =

n∑
k=1

xk+1 + xk+2

xk+1 + xk+2
.

Hence
n∑
k=1

xk
xk+1 + xk+2

>
n∑
k=1

xk+2

xk+1 + xk+2
=

n∑
k=1

xk+1

xk + xk+1
. (4)

Now we will apply the rearranging inequality : Let a1 > . . . > an and b1 > . . . > bn be two sets of numbers. Then
for each permutation k1, . . . , kn of numbers 1, . . . , n the following inequality holds

a1b1 + a2b2 + . . . anbn > a1bk1 + a2bk2 + . . . anbkn > a1bn + a2bn−1 + . . . anb1.
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Use the rearranging inequality twice

n∑
k=1

xk
xk+1 + xk+2

=
n−2∑
k=1

xk
xk+1 + xk+2

+
xn−1

xn + x1
+

xn
x1 + x2

>
(∗)

>
n−2∑
k=1

xk
xk+1 + xk+2

+
xn−1

x1 + x2
+

xn
xn + x1

>
(∗∗)

>
n∑
k=1

xk
xk + xk+1

.

The inequality (*) here is the rearranging inequality for two pairs of numbers: xn−1 > xn and 1
xn+x1

> 1
x1+x2

; and
the inequality (**) is the rearranging inequality for the sets x1, x2, . . . , xn−1 and 1

x1+x2
, 1
x2+x3

, . . . , 1
xn−1+xn

that
have opposite ordering.

Thus

2
n∑
k=1

xk
xk+1 + xk+2

>
n∑
k=1

xk
xk + xk+1

+
n∑
k=1

xk+1

xk + xk+1
= n.

For the decreasing set xi the solution is similar because we do not use the order of the variables when we apply the
Cauchy inequality, and for the rearranging inequalities we need the fact that the sets xi and 1

xi+xi+1
have different

orderings.

1.4. [3] It is easy to see that fn+2(x1, x2, . . . , xn, x1, x2) = fn(x1, x2, . . . , xn) + 1. Therefore if fn(x1, x2, . . . , xn) <
n/2, then fn+2(x1, x2, . . . , xn, x1, x2) < (n+ 2)/2.

1.5. [3] Assume that fm(x1, x2, . . . , xm) < m
2 . For each k let us calculate the difference

fm+1(x1, . . . , xk, xk, xk+1, . . . , xm)− fm(x1, x2, . . . , xm)− 1
2

=

=
xk−1

2xk
+

xk
xk + xk+1

− xk−1

xk + xk+1
− 1

2
=

(xk − xk−1)(xk − xk+1)
2xk(xk + xk+1)

.

If (xk − xk−1)(xk − xk+1) 6 0, then

fn+1(x1, x2, . . . , xk, xk, xk+1, . . . , xm) <
m+ 1

2
and we are done. If n is odd, we can always choose k such that (xk − xk−1)(xk − xk+1) 6 0 because otherwise the
product of the (odd number of) inequalities (xk − xk−1)(xk+1 − xk) < 0 for all k is

(x2 − x1)2(x3 − x2)2 . . . (xm − xm−1)2(x1 − xm)2 < 0 .

Thus if for odd n the Shapiro inequality is wrong then for n+1 it is wrong, too. It remains to apply the statement
of the previous problem.

1.6. [7, 8]

1.7. [28] Let yk = xk + xk+1. Then

x1 + x4

x2 + x3
+
x2 + x5

x3 + x4
+ . . .+

xn + x3

x1 + x2
=

n∑
k=1

yk − yk+1 + yk+2

yk+1
=

n∑
k=1

yk
yk+1

+
n∑
k=1

yk+2

yk+1
− n > n,

because by Cauchy inequality each sum is at least n.

1.8. The statements a), b) were published in [21].
a) !!! This short proof is taken from [8].
Denote for brevity a = (a1, a2, . . . , an), x = (x1, x2, . . . , xn), and u = (−1, 1,−1, 1, . . . ,−1, 1).
Observe that

∂f

∂xk
(x) =

1
xk+1 + xk+2

− xk−2

(xk−1 + xk)2
− xk−1

(xk + xk+1)2
.

It is easy to see that we have an identity

f(x+ tu) = f(x) + t

n∑
k=1

(−1)k
∂f

∂xk
(x).

Since a is the minimum point, we have
∂f

∂xk
(a) = 0.
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Therefore f(a+ tu) = f(a) if all the coordinates of the point a+ tu are positive. Hence a+ tu is the minimum point
of the function f as well. Hence,

∂f

∂xk
(a+ tu) = 0.

So
1

ak+1 + ak+2
− ak−2

(ak−1 + ak)2
− ak−1

(ak + ak+1)2
= 0

and
1

ak+1 + ak+2
− ak−2 + t(−1)k−2

(ak−1 + ak)2
− ak−1 + t(−1)k−1

(ak + ak+1)2
= 0.

Subtract the first equality from the second:

t

(ak−1 + ak)2
− t

(ak + ak+1)2
= 0.

Therefore,
ak−1 + ak = ak + ak+1.

and hence
a1 = a3 = a5 = · · · = an−1 and a2 = a4 = a6 = · · · = an.

Thus, f(a) = n/2.

b) This short proof is taken from [7]. Denote for brevity a = (a1, a2, . . . , an), x = (x1, x2, . . . , xn), y =
(y1, y2, . . . , yn), z = (z1, z2, . . . , zn), where yk = xk + xk+1 and zk = 1/yn+1−k.

Set

S(x) =
x1

x2 + x3
+

x2

x3 + x4
+ . . .+

xn−1

xn + x1
+

xn
x1 + x2

=
n−1∑
k=0

xk
yk+1

.

Observe that
∂f

∂xk
(x) =

1
xk+1 + xk+2

− xk−2

(xk−1 + xk)2
− xk−1

(xk + xk+1)2
.

It is easy to check the following identities:

a

b
+
c

d
=
a+ c

b+ d
+

a

b2
+

c

d2

1
b

+
1
d

.

Hence,

xk−2

xk−1 + xk
+

xk−1

xk + xk+1
=

xk−2 + xk−1

(xk−1 + xk) + (xk + xk+1)
+

xk−2

(xk−1 + xk)2
+

xk−1

(xk + xk+1)2
1

xk−1 + xk
+

1
xk + xk+1

=

=
yk−2

yk−1 + yk
+

zn−k −
∂f

∂xk
(x)

zn−k+1 + zn−k+2
.

Therefore,

2S(x) = S(y) + S(z)−
n∑
k=1

∂f

∂xk
(x)

zn−k+1 + zn−k+2
.

If x is a minimum point then we have 2S(x) = S(y) + S(z). Hence S(x) = S(y) = S(z).
Let u := (x1 + x2 + · · ·+ xn)/n. Consider the transformation M : Rn → Rn defined by

M(x) =
(x1 + x2

2
,
x2 + x3

2
, . . . ,

xn + x1

2

)
.

Let Mk(x) be its k-th iteration. Observe that S(x) = S(y) = S(M(x)) = · · · = S(Mk(x)). It is clear that
lim
k→∞

Mk(x) = (u, u, . . . , u). Then

S(x) = lim
k→∞

S(Mk(x)) = S((u, u, . . . , u)) =
n

2
.
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c) [16], [7, 8]

1.9. These solutions are taken from [3].
пїЅ) The problem was presented at the Third USSR mathematical olympiad, 1969. Probably it was originally

published in [14].
Let xi1 be the maximal number among x1, x2, . . . , xn; xi2 be the maximum of the two next numbers after xi1

(i.e. of xi1+1 and xi1+2); xi3 be the maximum of the two next numbers after xi2 , and so on. We will continue this
sequence till the step number k when the maximum of the two next after xik numbers is xi1 .

It is clear that k > n/2. We have

x1

x2 + x3
+

x2

x3 + x4
+ . . .+

xn
x1 + x2

>
xi1
2xi2

+
xi2
2xi3

+ . . .+
xik
2xi1

.

The last expression is at least k/2 by the Cauchy inequality therefore it is at least n/4.

b) Rewrite each of the fractions xk

xk+1+xk+2
, k = 1, 2, . . . , n, in the form

xk
xk+1 + xk+2

=
xk + 1

2xk+1

xk+1 + xk+2
+

1
2xk+1 + xk+2

xk+1 + xk+2
− 1 .

We obtain 2n fractions. Combine them by pairs: the first and the last, the second and the third, the fourth and the
fifth and so on. Now estimate the sum of each pair from below

1
2xk + xk+1

xk + xk+1
+

xk + 1
2xk+1

xk+1 + xk+2
> 2

√
( 1
2xk + xk+1)(xk + 1

2xk+1)
(xk + xk+1)(xk+1 + xk+2)

=

= 2

√(
1
2

+
xkxk+1

4(xk + xk+1)2

)
xk + xk+1

xk+1 + xk+2
>
√

2 ·
√

xk + xk+1

xk+1 + xk+2
.

Since the product of n numbers
√

x1+x2
x2+x3

,
√

x2+x3
x3+x4

, . . . ,
√

xn+x1
x1+x2

equals 1, then by the Cauchy inequality their sum

is at least n. Therefore f(x1, . . . , xn) >
√

2n− n = (
√

2− 1)n.

c) As in the previous solution rewrite each of the fractions xk

xk+1+xk+2
, k = 1, 2, . . . , n, in the form

xk
xk+1 + xk+2

=
xk + βxk+1

xk+1 + xk+2
+ α · βxk+1 + xk+2

xk+1 + xk+2
− α ,

where α and β are parameters chosen to make the equality true. For such a choice of α and β we need β + αβ = α,
i.e. β = α/(α+ 1). Then

xk + βxk+1

xk+1 + xk+2
+ α · βxk + xk+1

xk + xk+1
> 2

√
α

(xk + βxk+1)(βxk + xk+1)
(xk + xk+1)(xk+1 + xk+2)

=

= 2

√
α
β(xk + xk+1)2 + (β − 1)2xkxk+1

(xk + xk+1)(xk+1 + xk+2)
> 2
√
αβ

xk + xk+1

xk+1 + xk+2
=

2α√
α+ 1

·
√

xk + xk+1

xk+1 + xk+2
.

Therefore

x1

x2 + x3
+

x2

x3 + x4
+ . . .+

xn−1

xn + x1
+

xn
x1 + x2

>
2α√
α+ 1

(√
x1 + x2

x2 + x3
+
√
x2 + x3

x3 + x4
+ . . .+

√
xn + x1

x1 + x2

)
− αn >

>
2α√
α+ 1

n− αn =
(

2α√
α+ 1

− α
)
n .

For α = 5
4 we have c = 5/12.

R ema r k. This is a good approximation.The expression g(α) = 2α√
α+1
− α reaches its maximal value at α =

α0 ≈ 1.1479 (this is a root of the cubic equation g′(α) = 0), and the minimum value is g(α0) ≈ 0.4186. For α = 5
4

we have g(α) = 5
12 ≈ 0.416.

1.10. [9]. Set yk = xk+xk+1. We need to prove that

x1

y2
+
x2

y3
+ . . .+

xn
y1

>
n

2
,

7



or
n∑
k=1

2q2nxk − yk+1

yk+1
> n(q2n − 1).

We suppose that the parameter qn will be chosen later. Since

2q2nxk − yk+1 = (q2nxk − xk+1) + (q2nxk − xk+2) > 0 ,

by the Cauchy-Bunyakovsky inequality for sets{√
2q2nxk − yk+1

yk+1

}
and

{√
(2q2nxk − yk+1)yk+1

}
we have

n∑
k=1

2q2nxk − yk+1

yk+1
>

( n∑
k=1

(2q2nxk − yk+1)
)2

n∑
k=1

(2q2nxk − yk+1)yk+1

.

So it suffices to prove that

A2 :=
( n∑
k=1

(2q2nxk − yk+1)
)2

> n(q2n − 1)
n∑
k=1

(2q2nxk − yk+1)yk+1 =: n(q2n − 1)B.

Since
n∑
k=1

yk = 2
n∑
k=1

xk, we have

A = (q2n − 1)
n∑
k=1

yk ,

B = 2q2n
n∑
k=1

xkyk+1 −
n∑
k=1

y2
k = 2q2n

n∑
k=1

ykyk+1 − (q2n + 1)
n∑
k=1

y2
k .

So it remains to prove that

(q2n − 1)
( n∑
k=1

yk

)2

> n

(
2q2n

n∑
k=1

ykyk+1 − (q2n + 1)
n∑
k=1

y2
k

)
. (5)

Transform the left-hand side using the relation( n∑
k=1

yk

)2

= n

n∑
k=1

y2
k −

∑
i<k

(yi − yk)2.

The inequiality (5) will be transformed to

n

n∑
k=1

(yk − yk+1)2 >
(
1− 1

q2n

)∑
i<k

(yi − yk)2.

By the Cauchy-Bunyakovsky inequality

n∑
k=1

(yk − yk+1)2 >
k−1∑
j=i

(yj − yj+1)2 >
1

k − j

(k−1∑
j=i

(yj − yj+1)
)2

=
1

k − j
(yi − yk)2 >

1
n− 1

(yi − yk)2.

Hence
n(n− 1)

2

n∑
k=1

(yk − yk+1)2 >
1

n− 1

∑
i<k

(yi − yk)2.

So we can take 1− 1
q2n

= 2
(n−1)2 , i. e. qn = n−1√

n2−2n−1
> 1.

R ema r k. When n tends to infinity, the values qn which are found above tend to 1.
b)

1.11. (a) Denote ki := xi+1/xi. Then

S =
1

k1(k2 + 1)
+

1
k2(k3 + 1)

+ · · ·+ 1
kn(k1 + 1)

>
1

a1(an + 1)
+

1
a2(an−1 + 1)

+ · · ·+ 1
an(a1 + 1)

.

8



(b) The inequality holds because

1
ai(an+1−i + 1)

+
1

an+1−i(ai + 1)
=

1 + aian+1−i−1
(1+ai)(1+an+1−i)

aian+1−i
> bi

where the latter inequality holds because (1 + ai)(1 + an+1−i) > (1 +√aian+1−i)2.
(c) The first inequality 2S > g(ln(a1an))+ g(ln(a2an−1))+ · · ·+ g(ln(ana1)) holds because g(x) is less than both

e−x and 2(ex + ex/2)−1. The second inequality holds by the Jensen inequality because g is convex.
(d) [Dr]

2.1. a) [20]
For n = 4 we need to prove that

(x1 + x2 + x3 + x4)2 > 2x1x2 + 2x2x3 + 2x3x4 + 2x4x1 + 4x1x3 + 4x2x4 .

This follows from the inequality
x2

1 + x2
2 + x2

3 + x2
4 > 2x1x3 + 2x2x4 .

For n = 3 and n = 5 re-write the inequality. We need to prove that

(n− 1)(a1 + a2 + . . .+ an)2 > 2n
∑
i<k

aiak. (6)

Indeed, notice that the Cauchy–Bunyakovsky inequality applied to sets a1, a2, . . . , an and 1, 1, . . . , 1 gives us:

n(a2
1 + a2

2 + . . .+ a2
n) > (a1 + a2 + . . .+ an)2.

Now we have

n(a1 + a2 + . . .+ an)2 = n(a2
1 + a2

2 + . . .+ a2
n) + 2n

∑
i<k

aiak > (a1 + a2 + . . .+ an)2 + 2n
∑
i<k

aiak ,

which implies (6).
Now assume that n > 6. We may suppose that x3 > x1 and x3 > x2 (e.g. make a cyclic shift of variables such

that x3 becomes the maximum). For r = 1, 2, and 3 denote by ar the sum of all xk such that k ≡ r (mod 3) and
k 6 n. Then x1 + x2 + . . .+ xn = a1 + a2 + a3. Hence by (6) we have

(x1 + x2 + . . .+ xn)2 = (a1 + a2 + a3)2 > 3(a1a2 + a2a3 + a3a1) = 3 ·
∑

(i−k)6 ... 3

xixk .

Set

A :=
∑

(i−k)6 ... 3

xixk and B :=
n∑
k=1

xk(xk+1 + xk+2).

We have A > B because
• for n ≡ 0 (mod 3) all the summands of B are contained in A;
• for n ≡ 1 (mod 3) the sum A contains all the summands of B except xnx1, but xnx1 does not exceed xnx3;
• for n ≡ 2 (mod 3) the sum A contains all the summands of B except xn−1x1 and xnx2, but these summands

do not exceed xn−1x3 and xnx3, respectively.
Hence

(x1 + x2 + . . .+ xn)2 > 3A > 3B = 3
n∑
k=1

xk(xk+1 + xk+2).

In order to show that min
{
n
2 , 3
}
is the sharp constant for n 6 6 we set x1 = x2 = . . . = xn = 1 and for n > 6 we

set x1 = x2 = x3 = 1 and x4 = x5 = . . . = xn = 0.

b) The case n < 6 is trivial. For n = 6 the equality is achieved when x1 + x4 = x2 + x5 = x3 + x6. For n > 6 the
equality is achieved for the sets of form (t, 1, 1, 1− t, 0, . . . , 0), where t ∈ [0, 1], and their cyclic shifts.

2.2. [20]
For n = 4 and n = 7 this is a particular case of (6).
For n = 5 the inequality coincides with

∑
(xk − 2xk+2 + xk+4)2 > 0.

For n = 6 the inequality follows from x2
1 + x2

2 + . . .+ x2
6 > 2x1x4 + 2x2x5 + 2x3x6.

For n = 8 open brackets in the following corollary of the Cauchy–Bunyakovsky inequality

4(x2
1 + x2

2 + x2
3 + x2

4) > (x1 + x2 + x3 + x4)2.

We obtain
3(x2

1 + x2
2 + x2

3 + x2
4) > 2(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4).
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Hence
3(x1 + x2 + x3 + x4)2 > 8(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4), (7)

This is the required inequality for n = 8.
Now assume that n > 8. We may suppose that x4 > x1, x4 > x2, and x4 > x3. For r = 1, 2, 3, and 4 denote by

ar the sum of all xk such that k ≡ r (mod 4) and k 6 n. Then x1 + x2 + . . .+ xn = a1 + a2 + a3 + a4. Hence by (7)

3(x1 + x2 + . . .+ xn)2 = 3(a1 + a2 + a3 + a4)2 > 8(a1a2 + a2a3 + a3a4 + a4a1) > 8 ·
∑

(i−k)6 ... 4

xixk .

Set

A :=
∑

(i−k)6 ... 4

xixk and B :=
n∑
k=1

xk(xk+1 + xk+2 + xk+3).

We have A > B because
• for n ≡ 0 (mod 4) all the summands of B are contained in A;
• for n ≡ 1 (mod 4) the sum A contains all the summands of B except xnx1, but xnx1 does not exceed xnx4;
• for n ≡ 2 (mod 4) the sum A contains all the summands of B except xn−1x1 and xnx2, but these summands

do not exceed xn−1x4 and xnx4;
• for n ≡ 3 (mod 4) the sum A contains all the summands of B except xn−2x1, xn−1x2 and xnx3, but these

summands do not exceed xn−2x4, xn−1x4, and xnx4.
Hence

3(x1 + x2 + . . .+ xn)2 > 8A > 8B = 8
n∑
k=1

xk(xk+1 + xk+2 + xk+3).

2.3. a) Cf. [11]. By the Cauchy–Bunyakovsky inequality and Problem 2.2 we have

x1

x2 + x3 + x4
+

x2

x3 + x4 + x5
+ . . .+

xn−1

xn + x1 + x2
+

xn
x1 + x2 + x3

>
(x1 + x2 + . . .+ xn)2∑
xk(xk+1 + xk+2 + xk+3)

>
n

3
.

b) ???

2.4. [1, Problem 187]. We may assume that x1 6 x2. Set

S := x1 + x2 + . . .+ xn, S1 := x1 + x3 + . . . , S2 := x2 + x4 + . . . .

Then S2
1 + S2

2 > (S1 + S2)2/2 = S2/2. Hence

S2

2
> S2 − S2

1 − S2
2 = 2

∑
(i−k)6 ...2

xixk. (8)

If n is even, then the last sum contains all the summands of form xkxk+1. If n is odd, then the summand xnx1 is
missing, however the sum contains a greater summand xnx2. So

S2

2
> 2(x1x2 + x2x3 + . . .+ xnx1).

2.5. See the solution of 1.3 up to the inequality (4).

2.6. Induction on n > n = 4. Denote the left-hand side by Ln. We have

L4 =
x1 + x3

x2 + x4
+
x2 + x4

x1 + x3
= a+ a−1 > 2.

Let us prove the inductive step. We may assume that xn+1 is the minimal of all xi’s. Now remove the last summand
from Ln+1, and then decrease two others. We obtain

Ln+1 >
x1

xn+1 + x2
+ . . .+

xn
xn−1 + xn+1

>
x1

xn + x2
+ . . .+

xn
xn−1 + xn

= Ln .

In order to show that the constant 2 is sharp, take

x1 = x2 = 1, x3 = t, x4 = t2, . . . , xn = tn−2 .

When t→ +0, the first two summands tend to 1 and the remaining tends to 0.
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2.7. [10]. Set S := x1 + x2 + . . . + xn. Use the Cauchy–Bunyakovsky inequality for sets
{
xk+xk+1
xk+xk+2

}
and

{(xk + xk+1)(xk + xk+2)}. We obtain

x1 + x2

x1 + x3
+
x2 + x3

x2 + x4
+ . . .+

xn−1 + xn
xn−1 + x1

+
xn + x1

xn + x2
>

4(x1 + x2 + . . .+ xn)2
n∑
k=1

(xk + xk+1)(xk + xk+2)
.

So it suffices to prove that

S2 >
n∑
k=1

(xk + xk+1)(xk + xk+2) =
n∑
k=1

x2
k + 2

n∑
k=1

xkxk+1 +
n∑
k=1

xkxk+2.

This can be shown by opening brackets in the left-hand side, because for n > 4 all the summands xkxk+1 and
xkxk+2, where k = 1, 2, . . . , n, are different.

In order to show that the constant 4 is sharp, take xk = ak−1 for k = 1, 2, . . . , n − 1 and xn = an−2. When
a→∞, the first n− 3 summands tend to 0 and the remaining summands tend to 1, 2 and 1.

Using the Cauchy–Bunyakovsky inequality as it is done in the solution of the next problem, the reader will easily
find another solution of this problem reducing it to the inequality from Problem 2.4.

2.8. [6]. Use the Cauchy–Bunyakovsky inequality for sets
{

xk

xk−1+xk+2

}
пїЅ {xk(xk−1 + xk+2)}. We obtain

x1

xn + x3
+

x2

x1 + x4
+ . . .+

xn−1

xn−2 + x1
+

xn
xn−1 + x2

>
(x1 + x2 + . . .+ xn)2

(x1x2 + x2x3 + . . .+ xnx1) + (x1x3 + x2x4 + . . .+ xnx2)
.

So it suffices to prove that

S2 > 3(x1x2 + x2x3 + . . .+ xnx1) + 3(x1x3 + x2x4 + . . .+ xnx2) =: 3Y,

where S := x1 + x2 + . . .+ xn. Set

S1 := x1 + x4 + . . . , S2 = x2 + x5 + . . . and S3 = x3 + x6 + . . . .

Then S = S1 + S2 + S3 and S2
1 + S2

2 + S2
3 > S2/3. We may assume that x3 > x1 and x3 > x2. Notice that

S2 >
3
2
(S2 − S2

1 − S2
2 − S2

3) = 3
∑

(i−k)6 ...3

xixk =: 3Z.

• If n ≡ 0 (mod 3), then all the summands of Y are contained in Z.
• If n ≡ 1 (mod 3), then Z contains all the summands of Y except xnx1, but this summand does not exceed

xnx3.
• If n ≡ 2 (mod 3), then Z contains all the summands of Y except xn−1x1 and xnx2, but these summands do

not exceed xn−1x3 and xnx3.
Hence S2 > 3Y > 3Z, which proves the initial inequality.
In order to show that the constant 3 is sharp, take xk = ak−1 for k = 1, 2, . . . , n− 2 and xn−1 = xn = 1. When

a→ 0, the first and the last two summands tend to 1, while the remaining summands tend to 0.

2.9. [5]. The inequality is obtained by summing two inequalities of 2.8 (for the direct and the opposite order of
variables).

In order to show that the constant 6 is sharp, take xk = ak−1 for k = 1, 2, . . . , n− 2 and xn−1 = xn = 1. When
a→ 0, the last four summands tend to 1, 2, 2, 1, respectively; the remaining tend to 0.

2.10. This is conjectured in [19].
The following proof is due to P.Milošević пїЅ M. Bukić, participants of the Conference.
This inequality can be represented as sum of two inequalities for n = 2004 — the inequality from Problem 2.8

and the inequality
x1

x1 + x4
+

x2

x2 + x5
+ . . .+

xn
xn + x3

> 3 .

Prove the last inequality. For n = 3m it is the sum of three inequalities:

x1

x1 + x4
+

x4

x4 + x7
+ . . .+

xn−2

xn−2 + x1
> 1 .

x2

x2 + x5
+

x5

x5 + x8
+ . . .+

xn−1

xn−1 + x2
> 1 .

x3

x3 + x6
+

x6

x6 + x9
+ . . .+

xn
xn + x3

> 1 .
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Each of these inequalities can be re-written as

1
1 + a1

+
1

1 + a3
+ . . .+

1
1 + am

> 1 where a1a2 . . . am = 1.

This can be shown by induction. The base m = 2 is the following inequality:

1
1 + a1

+
1

1 + 1
a1

= 1 > 1 .

To prove the induction step, let us check that

1
1 + b

+
1

1 + c
>

1
1 + bc

.

This can be done directly by reducing to a common denominator and opening brackets.

Here is the proof of A. Khrabrov. Let us prove that

Z :=
x1 + x2

x1 + x4
+
x2 + x3

x2 + x5
+ . . .+

x3n + x1

x3n + x3
> 6.

Set x3n+k := xk and, for r = 0, 1, 2,

Sr :=
n∑
k=1

x3k+r, Xr :=
n∑
k=1

x3k+r

x3k+r + x3k+3+r
, and Yr :=

n∑
k=1

x3k+r+1

x3k+r + x3k+3+r
.

First we prove that Xr > 1. Consider only the case r = 0. Then

X0S
2
0 > X0

(
n∑
k=1

x2
3k +

n∑
k=1

x3kx3k+3

)
= X0

(
n∑
k=1

x3k(x3k + x3k+3)

)
> S2

0 ,

where the last inequality holds by the Cauchy–Bunyakovsky inequality. So X0 > 1.
Now prove that Yr > Sr+1/Sr (we set S3 := S0). Consider only the case r = 0.

Y0S0S1 > Y0

(
n∑
k=1

x3kx3k+1 +
n∑
k=1

x3k+1x3k+3

)
= Y0

(
n∑
k=1

x3k+1(x3k + x3k+3)

)
> S2

1 ,

where the last inequality holds by the Cauchy–Bunyakovsky inequality. So Y0 > S1/S0.
Summing up all the proved inequalities we obtain

Z = X0 +X1 +X2 + Y0 + Y1 + Y2 > 3 +
S1

S0
+
S2

S1
+
S0

S2
> 6.

In order to show that the constant 6 is sharp, take x1 = x2 = x3 = 1, xk = an−k+1 for k = 3, 4, . . . , n. When
a→ 0, the first and the second summands tend to 2, the third and the last tend to 1, and the remaining summands
tend to 0.

2.11. This proof is due to A. Khrabrov. Set S = x1+x2+. . .+xn and T =
∑

(i−k)6 ...2
xixk. By the Cauchy–Bunyakovsky

inequality for sets
{

xk
xk−1 + xk+3

}
and {xk(xk−1 + xk+3)} we have

x1

xn + x4
+

x2

x1 + x5
+ . . .+

xn−1

xn−2 + x2
+

xn
xn−1 + x3

>
(x1 + x2 + . . .+ xn)2

(x1x2 + x2x3 + . . .+ xnx1) + (x1x4 + x2x5 + . . .+ xnx3)
.

So it suffices to prove that

S2 > 4(x1x2 + x2x3 + . . .+ xnx1) + 4(x1x4 + x2x5 + . . .+ xnx3).

In the solution of problem 2.4 we proved that S2 > 4T , see (8). So it suffices to prove that

T > (x1x2 + x2x3 + . . .+ xnx1) + (x1x4 + x2x5 + . . .+ xnx3). (9)

Since n is even, all the summands of the right-hand sum are contained in the left-hand sum.
In order to show that the constant 6 is sharp, take xk = ak−1 and k = 1, 2, . . . , n−3 and xn−2 = xn−1 = xn = 1.

When a→ +0 the first summand and the three last summands tend to 1, and the remaining summands tend to 0.
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2.12. [14]. Note that a2 − ab+ b2 6 max{a, b}2.
Let xi1 be the maximal number of x1, x2, . . . , xn. Let xi2 be the maximal number of xi1+1 and xi1+2. Let xi3 be

the maximal number of xi2+1 and xi2+2, and so on. There exists a number k such that xik+1 = xi1 . Hence

n∑
k=1

x2
k

x2
k+1 − xk+1xk+2 + x2

k+2

>
k∑
j=1

x2
ij

x2
ij+1

> k >
[n+ 1

2

]
,

where the latter inequality holds because k > n/2.
In order to show that the constant

[
n+1

2

]
is sharp, take xk = 1 for odd k and xk = 0 for even k. Then the

left-hand side is
[
n+1

2

]
.
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