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Solutions.

2.1. Consider a family of segments in a line. Suppose that the intersection of all segments of this
family is empty. Prove that there exist two segments in this family, such that their intersection is
empty.

Denote the given segments as [a1, b1], . . . , [an, bn]. Let as = max1≤i≤n ai, bt = min1≤i≤n bi (it is
possible that s = t). If as ≤ bt then each given segment contains as, which contradicts the condition
of the problem. Hence as > bt, therefore t 6= s, and the sth segment has no common point with the
tth one.

2.2. Consider a tree G (i.e. a connected graph without cycles). Consider the finite family of
connected subgraphs of G such that the intersection of all these subgraphs is empty. Prove that there
exist two subgraphs in this family, such that their intersection is empty.

If we delete any edge e from a tree G, we cut this tree into two components. Moreover, if a
subtree G′ does not contain e, then it lies in one of these components.

Denote our subtrees by G1, . . . , Gn. Let k be a maximal integer such that the intersection
G = G1 ∩ G2 ∩ · · · ∩ Gk is nonempty (note that k < n). Then the intersection of G and Gk+1 is
empty.

Now consider a shortest path conecting G with Gk+1. The first edge e of this path does not
belong to G, hence some Gi (with 1 ≤ i ≤ k) also does not contain e. Let us delete this edge. The
subtrees Gk+1 and G come to different components of the remaining graph. Therefore Gk+1 and Gi
are also in different components. Hence their intersection is empty.

2.3. Consider a finite family of arcs of some fixed circle. Suppose that every 1000 arcs of this
family have a nonempty intersection. Show that all the arcs of the family do not necessarily have a
nonempty intersection.

Partition the circle into 1001 arcs (we call them small arcs). We call a complement of any small
arc a large arc. We claim that the family of large arcs is a desired example. Namely, it is easy to
check that the intersection of any 1000 large arcs is nonempty, but the intersection of all of them is
obviously empty.

Remark. The large arcs in the solution are assumed not to contain their endpoints. One may
decrease them slightly to obtain an example consisting of closed arcs.

2.4. (Helly’s theorem for the convex sets in the plane.) Let C be the family of all convex
sets in the plane. Prove that H(C) = 3.

Induction on the number n ≥ 4 of the considered convex sets. The base case is n = 4. Consider
our convex sets F1, F2, F3, F4. Let xi be a point of intersection of all of them except Fi. We apply
the following lemma.

Lemma 1 (Radon’s theorem). One can partition any four points in the plane into two sets so that
the convex hulls of these sets have a common point.

Proof. Consider two cases: (i) the points are the vertices of some convex quadrilateral, and (ii) one
of the points lies inside the triangle formed by the other three.
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So, suppose for example that the convex hulls of the sets {x1, x2} and {x3, x4} intersect at point x.
Then x lies if F3 and F4, since the whole segment x1x2 lies in these sets. Analogously, x ∈ F1 ∩ F2.
All the other cases are completely analogous.

For the induction step, assume that n ≥ 4 and consider n + 1 convex sets F1, . . . Fn+1. Let us
construct a new family consisting of n convex sets F ′1 = F1 ∩ Fn+1, . . . , F

′
n = Fn ∩ Fn+1. By the

statement of the base case, each three of the new sets have a nonempty intersection. Then, by the
induction hypothesis, all the new sets have a common point, QED.

2.5. Let P be the family of all infinite increasing arithmetic progressions consisting of positive
integers. Prove that H(P) = 2.

Let G be a finite family of progressions such that every two of them have a common element. Note
that the intersection of each two progressions from G is infinite (in fact, it is an infinite progression
as well). So, with no loss of generality we may assume that the ith progression is defined by the
condition x ≡ ai (mod ni) (for that, we need only to “forget” about some initial segment of the row
of the positive integers).

Consider one of our progressions; say it is defined by x ≡ a (mod n). This condition is equivalent
to the system of the relations having the form x ≡ a (mod p

αj

j ) (here, n = pα1
1 . . . pαk

k is the prime
decomposition of n). Now, let us write down such a system for each progression. We need to prove
that the system of all obtained relations is collocated (i.e. has a solution).

Note that every two relations in our system are collocated, since they correspond either to one
or to two progressions. Next, suppose that the system contains two equivalences modulo the powers
of the same prime p (say x ≡ a (mod pα) and x ≡ b (mod pβ)). These relations are collocated; we
may assume that α ≥ β. Then the latter relation is a consequence of the former one, so we may
delete the latter from the system.

Performing such steps, we finally arrive to a system where all moduli are the powers of distinct
primes. Such a system has a solution by the Chinese Remainder Theorem.

Remark. One may show that for every t ≥ 2, there are no t-Helly–Gallai numbers for the set of
out progressions,

2.6. Let O be the set of all the circumferences in the plane. Find H(O).
Answer. H(O) = 4.
Firstly, we prove that 4 is a Helly number for O. Consider a finite family G of circumferences such

that the intersection of all of them is empty. Consider arbitrary different circumferences O1, O2 ∈ G.
They have at most two points of intersection. Denote these points by A and B (if some of these
points do not exist, the arguments are the same).

Recall that no point belongs to all the circumferences. Therefore there exist O3, O4 ∈ G such
that A /∈ O3 and B /∈ O4. Hence O1, O2, O3, O4 have no common points, as desired.

We are left to present an example showing that H(O) > 3. Consider a noncyclic nondegenerate
quadrilateral ABCD. Consider four circumcircles of the triangles ABC, ABD, ACD, BCD. Each
three of them have a nonempty intersection but all four do not.

3.1. Let S be the family of segments in the line.
a) Prove that HG2(S) = 3
b) Prove that HGt(S) = t+ 1.
Item a) is a particular case of b); so we present only a solution for the latter one.
Denote the segments under consideration as [a1, b1], . . . , [an, bn]. Denote by c1 the minimal num-

ber among all bi’s. Then each our segment either contains c1 or lies to the right of c1. Denote by c2
the minimal bi such that the segment [ai, bi] lies to the right of c1. Analogously, we get that each
our segment either contains c1 or c2, or lies to the right of c2.

Proceeding in the same way while it is possible, we finally get the sequence c1, c2, . . . , ck such
that each segment contains at least one of these k numbers. So, if k ≤ t then we have found a desired
transversal. Assume now that k ≥ t + 1. Consider t + 1 segments with the right ends c1, . . . , ct+1;
by our choice, they are pairwise disjoint, so they do not admit a t-transversal.

Thus, we have proved that either all the segments have a t-transversal, or there are t+1 pairwise
disjoint segments. This means that t + 1 is a t-Helly–Gallai number for the segments in the line.
Finally, an obvious example of t+ 1 pairwise disjoint segments shows that HGt(S) > t.
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3.2. a) Construct a family F such that H(F) = 2 but HG2(F) ≥ 1000.
b) Prove that there exists a family F such that H(F) = 2 but HG2(F) =∞.
a) Set k = 500. We construct a family F of 2k + 1 sets A1, . . . , a2k+1 (all indices are considered

modulo 2k+1; thus Ai = A2k+1+i) as follows. Firstly, consider a set of indices S ⊂ {1, 2, . . . , 2k+1}
which does not contain two indices with difference 1 (in particular, we prohibit the situation 1, 2k+1 ∈
S). For each such set S, we introduce an element xS (the elements for different sets should be different
as well). Next, we define Ak = {xS : k ∈ S}.

The obtained family has a Helly number 2. Indeed, assume that a subfaily G ⊂ F has an empty
intersection; let G = {Ai : i ∈ I}. If I contains two indices i and i + 1 with difference 1, then
Ai, Ai+1 ∈ G and Ai ∩Ai+1 = ∅. Otherwise all the sets in G contain xI which is impossible.

Finally, we claim that every 2k sets from F have a 2-transversal while all 2k + 1 sets do not.
Assume that F admits a 2-transversal {xS , xT } with |S| ≥ |T |. Then |S| ≥ k + 1, and hence S
contains two neighboring indices which is impossible. On the other hand, let us delete A2k+1 from F ;
all the other sets have a 2-transversal {xS , xT } where S = {1, 3, . . . , 2k − 1} and T = {2, 4, . . . , 2k}.

Thus, HG2(F) = 2k + 1.
b) For every positive integer k, let us construct a family Fk as above. We may assume that

the sets from different families have no common elements. Then it is easy to show that the union
F = F1 ∪ F2 ∪ . . . satisfies all the requirements.

3.3. Prove that HG2(C) =∞. (Recall that C is the family of all convex sets in the plane.)
It suffices to prove that HG2(C) ≥ 2k + 1 for every positive integer k. Consider a circle with

center O; let x1, . . . , x2k+1 be the vertices of a regular (2k + 1)-gon inscribed into this circle (again,
we regard the indices modulo 2k+ 1). Let Ai be a convex hull of the points xi, . . . , xi+k−1. Then all
the considered sets except any of them admit a 2-transversal (e.g., {xk, x2k} is a 2-transversal for all
the sets except A2k+1).

On the other hand, we claim that each point T belongs to not more than k sets. Actually, let the
ray OT intersect the boundary of (2k + 1)-gon on the semiinterval (xi−1, xi]. Then T may belong
only to the sets Ai−k+1, . . . , Ai as desired.

Hence our family of cardinality (2k + 1) does not admin a 2-transversal, QED.

3.4∗. Denote by L the family of all the lines in the plane.
a) Prove that HGt(L) ≤ t2 + 1 for all t ≥ 3.
b) How far can you improve this bound?
a) Induction on t ≥ 3. We first prove the induction step; the base case t = 3 is investigated

further.
Let G be a finite family of lines such that every ≤ t2 +1 lines from G have a t-transversal. Choose

arbitrary t2 + 1 lines from G. One of the points of their t-transversal should belong to at least t+ 1
chosen lines. Denote this point by A, and let `1, . . . , `t+1 ∈ G be t+ 1 lines containing A.

Denote by G′ a subfamily of G consisting of those lines which do not contain A. We claim
that each subfamily D ⊆ G such that |D| ≤ t2 − t has a (t − 1)-transversal. Actually, we know
that the family D ∪ {`1, . . . , `t+1} has a t-transversal X. By the pigeonhole principle, two of the
lines `1, . . . , `t+1 should pass through the same point of X; hence this point is A, i.e. A ∈ X. Finally,
since the lines from D do not contain A, the set X \ {A} is a transversal of D.

Note now that t2 − t ≥ (t − 1)2 + 1 ≥ HGt−1(L). Hence G′ has a (t − 1)-transversal X by the
induction hypothesis; therefore X ∪ {A} is a desired t-transversal for G.

The proof of the base case follows the same lines except for the last paragraph (namely, the only
argument where we use the induction hypothesis). To finish this argument, it suffices to show that
t2 − t = 6 ≥ HG2(L).

Note first that HG1(L) ≤ 3. Actually, if every three lines from G have a common point, then the
intersection point of two of these lines should belong to all the other lines. Finally, the inequality
HG2(L) ≤ 6 can be obtained again in the same way as the induction step (with the numbers t2 + 1
and t2 − t replaces by 6 and 3, respectively).

b) We prove that HGt(L) = C2
t+2.
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Firstly, we show that HGt(L) ≥ C2
t+2. Take t+ 2 points T1, . . . , Tt+2 in a general position, and

draw all the lines connecting them. One may show that it is possible to choose the points in such a
way that no three lines intersect at a point different from Ti’s. For such arrangement of points, our
C2
t+2 lines do not admit a t-transversal, but all the lines except an arbitrary one have a t-transversal.
It remains to prove that HGt(L) ≤ C2

t+2. We will use the following lemma.

Lemma 2. Let P1(x, y), . . . , Pk(x, y) be the polynomials in two variables of degree ≤ t. Suppose
that k > C2

t+2. Then there exist the numbers s1, . . . , sk (not all of them are zeroes) such that
s1P1(x, y) + · · ·+ skPk(x, y) = 0.

Proof. Our conditions on the variables si can be rewritten as a system of C2
t+2 linear homogeneous

(i.e. with zero constant terms) equations (the number of equations is simply the number of monomials
of degree ≤ t in two variables). Since the number of variables is strictly greater than the number of
equations, this system has a nonzero solution.

Now we return to the solution. Obviously, it suffices to prove the following statement: If n ≥ C2
t+2,

and every n lines in G have a t-transversal, then every n+ 1 lines from G also have a t-transversal.
Assume the contrary and consider a family F of n + 1 lines violating our statement. Introduce

a Cartesian system so that the origin does not lie on any considered line. For an arbitrary index j,
the equation of the jth line `j can be written in the form ajx+ bjy + 1 = 0.

Now let us fix an arbitrary index i for a while. All the lines in F except `i have a t-transversal
consisting of points (x1, y1), . . . , (xt, yt) (surely, none of these points lie on `i). This means that∏t
k=1(ajxk + bjyk + 1) = 0 for all j 6= i, but the same relation is false for j = i. Denoting now

Pi(a, b) =
∏t
k=1(axk + byk + 1), we obtain that Pi(aj , bj) = 0 for all j 6= i, but Pi(ai, bi) 6= 0.

All the obtained polynomials have degree t. By the lemma above, there exist the numbers
s1, . . . , sn such that

∑n
i=1 siPi(a, b) = 0. We may assume that s1 6= 0. Hence we get

∑n
i=1 siPi(a1, b1) =

s1P1(a1, b1) 6= 0. A contradiction.

4.1. Let G be some finite family of sets having at most d elements each. Suppose that every d + 1
sets of G have a nonempty intersection. Prove that the intersection of all the sets of G is nonempty.

Moreover, show that in the previous statement, the number d+ 1 can not be replaced with d.
Comprehension exercise. Reformulate this problem with the use of terminology introduced

above.
The problem statement can be rewritten as H(Nd) = d+ 1.
Let G be a family of all subsets with d elements in some fixed set X of cardinality d + 1. Then

each d elements have a common element but the whole family does not. Thus, H(Nd) ≥ d+ 1.
Consider now an arbitrary finite subfamily G ⊂ Nd such that each d+1 sets in G share a common

element. For every i = 1, . . . , d+1, denote by si the minimal cardinality of the intersection of some i
sets from G. Obviously, 1 ≤ sd+1 ≤ sd ≤ · · · ≤ s1 = d. It follows that sj+1 = sj for some j ∈ [1, d].

Consider now the sets A1, . . . , Aj ∈ G such that |Q| = sj , where Q = A1 ∩ · · · ∩Aj . Assume that
Q 6⊆ A for some A ∈ G; then we get sj+1 = sj > |Q ∩ A| = |A1 ∩ · · · ∩ Aj ∩ A| which contradicts to
the definition of sj+1. Thus, all the sets in G contain a nonempty set Q, QED.

4.2. Prove that all the numbers of the form HGt(Nd) are finite.
Surely, this problem is a corollary of the problem 4.5. Here we present an easier proof.
Induction on t. The base case t = 1 follows from the previous problem.
For the induction step, assume that HGt−1(Nd) = S < ∞. We prove that HGt(Nd) ≤ T =

S + CtSd.
Consider an arbitrary finite subfamily G ⊂ Nd such that every T sets in G have a t-transversal.

If every S sets of G have (t − 1)-transversal, then the family G has even a (t − 1)-transversal by
the induction hypothesis. Otherwise, there exists a subfamily K = {A1, . . . , AS} ⊂ G which has
no (t − 1)-transversal. Thus each t-transversal of the family K should be contained in the set
Q = A1 ∪ · · · ∪AS . Remark that |Q| ≤ Sd.

Assume now that the family G has no t-transversal. Then for each t-element subset X ⊂ Q there
exists a set AX ∈ G such that AX ∩X = ∅. Now consider the subfamily

K′ = K ∪ {AX : X ⊂ Q, |X| = t} .
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We have |K′| ≤ S + CtSd = T . Therefore K′ must have a t-transversal Y . Since K ⊂ K′, we have
Y ⊂ Q. Finally, by the choice of K′, there exists the set AY ∈ K′ such that AY ∩ Y = ∅. This
contradiction concludes the proof.

4.3. a) Prove that HGt(N2) ≥ C2
t+2.

b) Prove that HGt(N2) = C2
t+2.

a) See problem 4.4.
b) Follows from problem 4.5.

4.4. Prove that HGt(Nd) ≥ Ctd+t.
It suffices to take a family G of all d-element subsets of some fixed (d+t)-element set X. Actually,

each t-element subset in X has a common element with each set in G except one.

4.5∗. (The principal result of this section) Prove that HGt(Nd) = Ctd+t.
See the next problem.

4.6. a) (Katona’s problem) Assume that the sets A1, A2, . . . , An, B1, . . . , Bn are chosen so that
|Ai| = d, |Bi| = t, for i 6= j the set Ai has at least one common element with the set Bj, but
Ai ∩Bi = ∅. Prove that n ≤ Ctd+t.

b) Assuming that Katona’s problem is solved, prove the problem 4.5.
a) Follows immediately from problem 4.7.
b) Assume the contrary. Consider a family G ⊂ Nd of minimal cardinality such that every its

subfamily with ≤ Ctd+t sets has a t-transversal, but G does not have a t-transversal. Surely, we have
|G| > Ctd+t.

Let G = {A1, . . . , An}. By our choice, for every i = 1, . . . , n the family G \ {Ai} has a t-
transversal Bi. By the choice again, we have Ai ∩ Bi = ∅. Thus, the sets A1, . . . , An, B1, . . . , Bn
satisfy the conditions of Katona’s problem and hence |G| = n ≤ Ctd+t. A contradiction.

4.7. Assume that the sets A1, A2, . . . , An, B1, . . . , Bn satisfy Katona’s conditions, i.e. Ai ∩Bi = ∅

and Ai ∩Bj 6= ∅ for all i 6= j. Let ai = |Ai|, bi = |Bi|. Prove that
n∑
i=1

1
Cai
ai+bi

≤ 1.

Let X = A1 ∪ · · · ∪An ∪B1 ∪ · · · ∪Bn; denote n = |X|. Consider all m! ways of numbering the
elements of X by 1, . . . ,m (or, equivalently, all bijections σ : X → {1, 2, . . . ,m}). Consider any such
numbering σ; we say that it is of ith type (for some 1 ≤ i ≤ n) if all the elements of Ai have smaller
numbers than all the elements of Bi (i.e. σ(a) < σ(b) for all a ∈ Ai, b ∈ Bi).

Firstly, we note that each numbering is of at most one type. Assume, to the contrary, that σ is
of both ith and jth types for i 6= j. Denote ai = maxa∈Ai σ(a), aj = maxa∈Aj σ(a); we may assume
that ai ≤ aj . Then for every b ∈ Bj and a ∈ Ai we have σ(b) > aj ≥ ai ≥ σ(a); hence Ai ∩Bj = ∅.
This contradiction shows that our claim is valid.

Next, let us estimate the total number of the numberings of ith type. The elements of Ai ∪ Bi
can be ordered in (ai + bi)! ways, and there are exactly ai!bi! appropriate ones. Moreover, for each
such order, there exists the same number of the numberings realizing this order. Hence the number

of the numberings of ith type is exactly m! · ai!bi!
(ai + bi)!

= m! · 1
Cai
ai+bi

.

Finally, the total number of the numberings is at least the sum of all the numbers found above,
i.e.

n∑
i=1

m!
Cai
ai+bi

≤ m!,

QED.

4.8. Prove that there exist positive integers a1, . . . , an, b1, . . . , bn such that (i)
n∑
i=1

1
Cai
ai+bi

<
1

10100
,

but (ii) there are no sets A1, A2, . . . , An, B1, . . . , Bn satisfying Katona’s conditions such that |Ai| =
ai, |Bi| = bi.
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Define a1 = 1, a2 = 10101, a3 = 10101 and b1 = 10101, b2 = 1, b3 = 1. Then each of the sets B2

and B3 should have a common element with A1. All these three sets are of cardinality 1, so they
should coincide. Hence, since B2 ∩A2 = ∅, we also have B3 ∩A2 = ∅ which is impossible.

5.1. Let F be a family of sets. Suppose that |A∩B| = 1 for every distinct A,B ∈ F (in particular,
this condition implies that F is a family of degree 1). Suppose, in addition, that among any four sets
in F , there exists three sets having a nonempty intersection. Prove that one can delete one of the
sets from F so that all the remaining sets will have a nonempty intersection.

Consider three sets with a nonempty intersection, say x ∈ A ∩ B ∩ C. Suppose that there exist
two different sets D and E not containing x. Consider the four sets A,B,D,E. Some three of them
have a common element y (y 6= x since x /∈ D,E). Then y belongs to at least one of the sets A
and B; without loss of generality, y ∈ A. Next, A and B may have at most one element in their
intersection, and x ∈ A ∩B; therefore y /∈ B. Analogously, y /∈ C. Then y ∈ D and y ∈ E, in other
case there is no three sets among A,B,D,E covering y.

Consider the four sets B,C,D,E. Among any three of them there are either both B and C, or
both D and E. The unique common element of B and C is x, and it does not belong to D or E.
Analogously, the unique common element of D and E is y, and it does not belong to B or C. Thus,
the four sets B,C,D,E have no element belonging to three of them. This contradiction proves that
there exists at most one set in F not containing x.

5.2. Let F be a family of sets. Suppose that F contains at least 17 sets, and for every distinct
A,B ∈ F we have |A ∩B| = 1. Moreover, suppose that among any 5 sets in F , there are three sets
with a nonempty intersection. Prove that there exists a 2-transversal for F .

Assume that for every four sets in F , there are three with a nonempty intersection. Then, by
the previous problem, some element x belongs toall the sets on F except one. Taking any element y
from this exceptional set, we obtain a 2-transversal {x, y} of F .

Otherwise, there exist four sets A,B,C,D such that no three of them share a common element.
Adding any other set E ∈ F , we obtain a 5-tuple of sets three of which have a common element;
these sets should be E together with some pair of the original four sets, and their common element
is a (unique!) common element for this pair. There are 13 ways to choose E ∈ F and 6 ways to
choose a pair of the original sets. Hence, some pair appears for three choices of E, and its common
element x belongs to five sets in F . Now we denote these five sets by X1, X2, X3, X4, X5.

Consider now all the sets in F not containing x. If there are at most two of them, then their
common element y together with x form a desired 2-transversal for F . Next, if every three of these
sets have a common element, then it is easy to see that this element y should be the same for all the
triples, and {x, y} is a 2-transversal for F again.

In the only case remaining, there exist three sets Y,Z, T not containing x and with no common
element. Denote their pairwise common elements by a1, a2, a3. Note that ai cannot belong to two
of the sets X1, . . . , X5 since otherwise these two sets have two common elements: x and ai. Hence,
among these five sets there are two (say X4 and X5) containing none of ai’s. Finally, consider five
sets X4, X5, Y, Z, T ; no three of them have a common element. A contradiction.

Firstly, we will present the solutions of problems 5.10 and 5.12–5.14. We will use
them further as lemmas.

In the sequel, by G we always denote a (d, t)-exceptional family.
One may easily check that XA 6⊆ XB for arbitrary distinct A,B ∈ G.
We need the following easy lemmas.

Lemma 3. Let S be some set, |S| = s. Consider the subfamily F = {A : A ∈ G, S ⊆ XA}. Then
F is a (d, t− s)-exceptional family.

Proof. If S ⊆ XA then S∩A = ∅. Thus for all distinct A,B ∈ F we have A∩(XB\S) = A∩XB 6= ∅.
Hence, the set XA \ S has a common element with each set in F except A. Moreover, we have
|XA \ S| = t− s. That means exactly that F is (d; t− s)-exceptional.

Lemma 4. Let S be some set, |S| = s. Consider the family F = {A \ S : A ∈ G, S ⊂ A} ⊂ G.
Then F is a (d− s, t)-exceptional family.

6



Proof. For every distinct A,B ∈ G, we have |(A \ S) ∩ (B \ S)| = |A ∩ B| − s ≤ d − s. Also, since
XA ∩ S = ∅ we have (B \ S) ∩XA = B ∩XA 6= ∅. Finally, (A \ S) ∩XA ⊆ A ∩XA = ∅.

5.10. Prove that b(d; t) ≥ a(d; t).
It is sufficient to prove that for any integer n, a(d; t) > n implies b(d; t) > n.
If a(d; t) > n, then there exist a family G of degree d such that any n sets in G have a t-transversal,

but the whole family does not. Consider the minimal (with respect of number of sets) subfamily
F ⊂ G having no t-transversal. Obviously, |F| > n. Since F is minimal, any subfamily of F has a
t-transversal, thus F is (d, t)-exceptional. Then b(d; t) > n.

Remark. In the sequel, almost all the upper bounds for a(d; t) are in fact the upper bounds
for b(d; t). In this case we just omit mentioning that b(d; t) ≥ a(d; t).

5.12. a) Let t = 2. Prove that h(x) ≤ d+ 2 for arbitrary x.
b) Prove that h(x) ≤ b(d; t− 1) for arbitrary d, t, x.
Although item b) is a generalization of item a), we present a separate proof of item a) to clarify

the idea.
а) Suppose h(x) ≥ d + 3, i.e. there exist A1, . . . , Ad+3 ∈ G such that XAi = {x, xi} for

some elements xi (obviously, the elements xi are distinct). Then {x1, x2, . . . , xd+1} ⊂ Ad+2 and
{x1, x2, . . . , xd+1} ⊂ Ad+3 which contradicts the condition |Ad+2 ∩Ad+3| > d.

b) Applying Lemma 3 for the case S = {x}, we obtain that the family F = {A ∈ G : x ∈ XA} is
(d, t− 1)-exceptional, thus h(x) = |F| ≤ b(d; t− 1).

5.13. Prove that g(x) ≤ b(d− 1; t) for every x.
Applying Lemma 4 to the set S = {x}, we obtain that F = {A \ {x} : A ∈ G, x ∈ A} is

(d− 1, t)-exceptional, i.e. g(x) = |F| ≤ b(d− 1; t).

5.14. Assume that t = 2 and h(x) ≤ d. Prove that |G| ≤ g(x) + h(x) + b(d− h(x); 2).
Let B1, . . . , Bh ∈ G be all the sets in G that contain x (then h = h(x)). Let XBi = {x, xi}; again

all xi are distinct.
Let A1, . . . , Ak ∈ G be all the sets such that x /∈ Ai and x /∈ XAi . Since k = |G| − g(x)− h(x), it

is sufficient to prove that k ≤ b(d− h(x); 2).
Since Ai 6= Bj for all i and j, we get {x, xj} ∩ Ai 6= ∅. Keeping in mind that x /∈ Ai we get

xj ∈ Ai. Denote Y = {x1, . . . , xh}; we have proved that Y ⊂ Ai for all i = 1, . . . , k. Now, applying
Lemma 4 for S = Y we get k ≤ b(d− h; 2).

Remark. Both the statement and the proof remain valid for the case h(x) > d; note that we
have b(d− h; t) = 1 for d < h.

Now, we firstly prove the serial bounds, although using sometimes the sharp partial
bounds obtained further.

Since a(d; t) ≤ b(d; t) (see problem 5.10) it is sufficient to prove the required upper bounds
for b(d; t) instead of a(d; t). Thus in such cases we always consider some (d; t)-exceptional family G
and prove some upper bounds for |G|.
5.8. a) Prove that a(d; t) ≥ Ctd+t+1.

b)∗∗ Do there exist the values of d and t such that the inequality in a) is strict?
a) Consider a set B, |B| = d + t + 1. Let G be the family of all (d + 1)-element subsets of B.

Then for any distinct A1, A2 ∈ G we have |A1 ∩ A2| ≤ d. Also, for any A ∈ G we put XA = B \ A.
Thus |XA| = t and A1 ∩XA 6= ∅ for any distinct A,A1 ∈ G. So, G is (d, t)-exceptional.

b) The solution of this item is still not known.

5.3. Prove that a(d; 1) = d+ 2.
Suppose that a (d; 1)-exceptional family G contains at least d+3 sets, say {A1, A2, . . . , Ad+3} ⊆ G.

Let XAi = {xi}, all xi are distinct for i = 1, . . . , d + 3. By the definition of a (d; t)-exceptional
family we have xi ∈ A1 for i = 3, . . . , d + 3. Analogously xi ∈ A2 for i = 3, . . . , d + 3. Thus
|A1 ∩A2| ≥ |{x3, . . . , xd+3}| = d+ 1. A contradiction.

Remark. Further we will also use an obvious proposition a(0; t) = b(0; t) = t+ 1.

For the sake of brevity we introduce the following notation.
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Definition 1. Let Gx = {A ∈ G : x ∈ A} and Hx = {A ∈ G : x ∈ XA} for arbitrary x.

For the induction step in the next problem, we need the following sharpening of the statement
of problem 5.12a).

Lemma 5. Assume that t = 2 and |G| > b(d− 1; 2) + d+ 3. Then h(x) ≤ d for all x.

Proof. Assume, to the contrary, that there exist d+ 1 distinct sets A1, . . . , Ad+1 such that x ∈ XAi .
Let XAi = {x, xi} (again all xi are distinct). Applying problem 5.13 we get g(x) ≤ b(d − 1; 2), so
there are at least d+ 3 sets in G \Gx and at least two of these sets are distinct from A1, . . . , Ad+1.
Denote those two sets by B and C. Since x /∈ B but XAi ∩B 6= ∅ we conclude {x1, . . . , xd+1} ⊆ B.
Analogously {x1, . . . , xd+1} ⊆ C. Thus |B ∩ C| ≥ d+ 1. A contradiction.

Remark. In fact, this proof is a repetition of the solution of problem 5.14 (or its version for
h > d).

5.5. а) a) Prove that a(d; 2) ≥ C2
d+3.

b) Prove that a(d; 2) ≤ 2d2 + 3 for all d ≥ 2.
а) Follows from problem 5.8а).
б) We use the induction on d ≥ 2 to prove that b(d; 2) ≤ 2d2 + 3. The base case will follow from

the step.
Assume first that b(d; 2) ≥ b(d− 1; 2) + d+ 3. Then for all x we have h(x) ≤ d by Lemma 5. Let

b = |G|.
Now, for every element x denote by n(x) the number of (ordered) triples of distinct sets (A,B,C)

from G such that x ∈ A, x ∈ B, and x ∈ XC . We will bound the sum σ of all the numbers n(x) in
two different ways.

On one hand, there exist b(b− 1) pairs of different sets (A,B). For each such pair, there are not
more than d ways to choose an element x ∈ A ∩B, and for every such element there exist h(x) ≤ d
possibilities for C. Thus, we get σ =

∑
x n(x) ≤ b(b− 1) · d2.

On the other hand, consider an arbitrary set C; let XC = {x, y}. Each of the other b − 1 sets
in G contains either x or y. Denote by sx and sy the number of sets containing x and y, respectively.
Then sx + sy ≥ b − 1. Furthermore, there exist sx(sx − 1) pairs of the sets intersecting by x, as
well as sy(sy − 1) pairs intersecting by y. In all, the triples with this fixed C are counted exactly
s(C) = sx(sx − 1) + sy(sy − 1) times. From sx + sy ≥ b − 1 one easily gets s(C) ≥ (b−1)(b−3)

2 (the
estimate is sharp for sx = sy = b−1

2 ). Thus, we get σ ≥ b (b−1)(b−3)
2 .

Finally we get d2b(b− 1) ≥ σ ≥ 1
2b(b− 1)(b− 3), hence 2d2 ≤ b− 3, QED.

The only remaining case is b(d; 2) ≤ b(d−1; 2)+d+2. If d ≥ 3, then by the induction hypothesis
we have b(d; 2) ≤ (2(d − 1)2 + 3) + d + 2 = 2d2 − 3d + 5 ≤ 2d2 + 3, as desired. Finally, if d = 2,
then we use the problem 5.4a) to obtain b(1; 2) = 6, therefore b(2; 2) ≤ 6 + 2 + 2 = 10 which is even
stronger than we need.

Remark. Note that the estimates in main part of the solution admit some improvements. Thus,
the upper bound for σ is sharp only if h(x) = d for all x. On the other hand, one may see from
problem 5.14 that under this restriction g(x) is much greater than b−1

2 , and the lower bound is far
from being sharp. The method of obtaining sharper bounds is shown in the proof of the Lemma 7
before the computation of b(1; 4) and applied after that.

5.7. a) Prove that a(1; t) ≥ C2
t+2.

b) Prove that a(1; t) ≤ t2 + 1 for all t ≥ 3.
а) Follows from problem 5.8а).
б) The solution is literally the same as that for 3.4a): the only property of the lines which is used

there (but not in 3.4b)!) is exactly that they form a family of degree 1.

5.11. Prove that the number b(d; t) is finite for all d and t.
We prove the estimate b(d; t) ≤ td+1 + (td−1 + td−2 + · · · + t0) by the induction on d ≥ 1. The

base case d = 1 is proved in 5.7б).
For the induction step, let d ≥ 2. Consider an arbitrary set A ∈ G; let XA = {x1, . . . , xt}.

Then each of the other sets in G contains at least one of the elements x1, . . . , xt. Next, the number

8



of sets in G containing xi is at most b(d − 1; t) by Lemma 4. Therefore |G| ≤ 1 + tb(d − 1; t) =
1 + td+2 + (td + td−1 + · · ·+ t), as desired.

Remark. Instead of 5.7б), one may use a trivial bound b(0; t) ≤ t + 1 as the base case. This
way, one obtains a bit weaker bound, namely b(d; t) ≤ td+1 + td + · · ·+ 1.

5.9. a) Prove that the number a(d; t) is finite for every pair (d, t).
b) Try to obtain a good1 bound for the number a(d; t).
Item a) is an immediate consequence of 5.10 and 5.11. From the solutions of the same problems

one can obtain a(d; t) ≤ td+1 + (td−1 + td−2 + · · ·+ t0) for all d ≥ 1.
Finally, we proceed to sharp (although particular) results from problems 5.4 and 5.6.

Here we do not refer to the numbers of problems but just write down the equalities to
be proved.

The lower bounds in all cases follow directly from problem 5.8a). For the upper bounds we
assume again that a (d; t)-critical family G is chosen and we bound the cardinality of the family.

b(1; 2) = 6. Assume that |G| ≥ 7. Consider an arbitrary C ∈ G; set XC = {x, y}. Then each
of the remaining sets in G contains either x or y; hence at least three of the sets contain the same
element of XC , say x ∈ A1, A2, A3. Notice that g(x) ≤ 3 by problem 5.13; so the remaining sets in G
do not contain x. By our assumption, G contains at least 4 sets C1, C2, C3, C4 distinct from Ai.

Consider an arbitrary index k = 1, 2, 3, 4. Set XCk
= {x1, x2}. There must be two sets among Ai

containing the same element xj . Since their intersection consists of x only (because G is a family of
degree 1!) it follows that x = xj ∈ XCk

. Thus x ∈ Ck for each k = 1, 2, 3, 4. Then by Lemma 3
applied to S = {x} the family {C1, C2, C3, C4} is (1; 1)-exceptional, and by problem 5.3 it has at
most 3 elements. A contradiction.

Remark. Analyzing this solution one can capture the following lemma useful for the sequel.

Lemma 6. Let G be an exceptional (1, t)-family such that g(x) ≥ t + 1 for some x. Then for each
B ∈ G, we have either x ∈ B or x ∈ XB. Moreover, in this case we have that g(x) = t + 1 and the
family F = G \Gx is (1, t− 1)-exceptional.

Proof. Assume that g(x) ≥ t+ 1; we have Gx ⊇ {A1, . . . , At+1}.
Assume that x /∈ B and x /∈ XB for some B ∈ G. Each of the sets A1, . . . , At+1 contains at least

one element of XB; since |XB| = t it follows that two of these sets contain the same element (say,
y ∈ A1 ∩ A2 ∩ XB). But then A1 ∩ A2 contains (distinct!) elements x and y, which is impossible.
Thus the required set B does not exist.

Further, g(x) ≤ t + 1 by problem 5.13, so that g(x) = t + 1. The second assertion now follows
from Lemma 3.

b(1; 3) = 10. Assume that |G| ≥ 11. Consider an arbitrary C ∈ G; setXC = {x, y, z}. Then each
of the remaining sets in G contains at least one of the elements x, y, or z, thus g(x)+g(y)+g(z) ≥ 10.
Hence at least one of the summands is greater than 3, say, g(x) ≥ 4. Then by Lemma 6 we obtain
that F = G \Gx is (1; 2)-exceptional, and |F| ≥ 7. This contradicts to b(1; 2) = 6.

Remark. The previous two statements essentially repeat the solution of problem 3.4а). We
present them here to make the appreciation of the next point more convenient.

For the sequel we improve somehow the main approach of problem 5.5. That is, we slightly
modify the definition of the sum σ, so that it allows to obtain a bit better estimates. The meaning
of the following definition is clear from the lemma afterwards.

Definition 2. For each element x belonging to at least one set of the form XA, the price of x

is p(x) =
g(x)(g(x)− 1)

h(x)
. For each C ∈ G, define its price by the formula P (C) =

∑
x∈XC

p(x).

Lemma 7. Let G be a (d; t)-critical family of cardinality b. Then there exists a set C ∈ G such that
P (C) ≤ d(b− 1).

1as good as possible. . .
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Proof. Again, for each element x denote by n(x) the number of ordered triples of distinct sets (A,B,C)
from the family G such that x ∈ A, x ∈ B, and x ∈ XC . But now we are going to estimate a different
sum, that is

Σ =
∑
x

n(x)
h(x)

(naturally, the sum is over all the elements appearing in the sets of the form XA).
On one hand, there exist b(b − 1) pairs of distinct sets (A,B). For each such pair there is no

more than d possibilities to choose an appropriate element x (because |A ∩ B| ≤ d). Further, any
element x ∈ A ∩ B contributes exactly 1 to the sum Σ; indeed, there exist h(x) possibilities for the
set C, and each of these possibilities is counted with the “weight” 1/h(x). Thus we get

Σ =
∑

(A,B): A 6=B

|A ∩B| ≤ d · b(b− 1).

On the other hand, we consider an arbitrary set C, and we show that its contribution to Σ is
equal to P (C). Indeed, for each x ∈ XC , we count exactly g(x)(g(x)− 1) pairs in the number n(x).
Taking into account the “weight” 1/h(x), we obtain that the “contribution of the pair x,C” equals
p(x). Therefore the contribution of the set C equals P (C), as required.

So db(b − 1) ≥ Σ =
∑

C∈G P (C). By the pigeonhole principle, one of the b summands from the
right-hand side is not greater than d(b− 1).

b(1; 4) = 15. Assume that |G| ≥ 16; removing several sets from G we may also assume that
b = |G| = 16. Consider an arbitrary C ∈ G; set XC = {x1, x2, x3, x4}. Analogously to the previous
case, we get

∑
i g(xi) ≥ 15, and g(xi) ≤ 4 (otherwise, using Lemma 6, we get a contradiction with

b(1; 3) = 10).
So

∑
i g(xi) =

∑
i |Gxi | ≤ 16, but each set A ∈ G distinct from C must be contained in at least

one of Gxi . This implies that either all the families Gxi are disjoint or only two of them intersect
each other by a single set. In any case we may assume that Gx1 , Gx2 , and Gx3 are disjoint and
contain 4 sets each.

Proposition. For each A ∈ G, which is distinct from C, the set XA contains neither of the
elements x1, x2, x3.

Proof. Assume that x1 ∈ XA; then clearly x1 /∈ A. Notice that one of the two elements x2, x3

also does not belong to A, because Gx2 ∩Gx3 = ∅; we may assume that x2 /∈ A. Suppose now that
x2 /∈ XA. Denote by B1, B2, B3, B4 the four sets containing x2; none of them contains x1. The
intersection of any two of them is {x2}; hence all the sets Bi ∩XA are disjoint. Thus XA consists
of these four intersections (because |XA| = 4). But they do not contain x1. This contradicts to the
assumption that x1 ∈ XA.

We have proved that x1, x2 ∈ XA. Now assume that x3 /∈ XA. The family Gx3 contains at least
three sets distinct from A. They must intersect with XA by distinct elements, which are also distinct
from x1, x2. This is again impossible because |XA| = 4. Thus XA = {x1, x2, x3, y} for some y 6= x4.

Finally, consider two sets B,B′ ∈ G which do not belong to Gx1 ∪Gx2 ∪Gx3 and are distinct from
A and C (such sets exist because |Gx1 |+|Gx1 |+|Gx1 |+2 = 14 = |G|−2). Then ∅ 6= B∩XC , therefore
x4 ∈ B. Analogously, y ∈ B, and also x4, y ∈ B′. Thus |B ∩B′| ≥ 2, which is impossible.

So we know that h(x1) = h(x2) = h(x3) = 1 and g(x1) = g(x2) = g(x3) = 4. Hence
P (C) ≥ 3 · 12

1 + p(x4) > 36. On the other hand, by Lemma 7 there exists C ∈ G such that P (C) ≤
db = 30 < 36. This contradiction concludes the proof.

b(2; 2) = 10. Assume that |G| = 11. It follows from Lemma 5 that h(x) ≤ 2 for each x, and by
problem 5.13 we have g(x) ≤ 6. Then by problem 5.14, we get that g(x) = 6 whenever h(x) = 2.
Thus if g(x) attains one of the values 4, 5 or 6, then p(x) cannot be less than 12, 20 or 30

2 = 15,
respectively.

By Lemma 7 there exist C ∈ G such that P (C) ≤ 2·10 = 20. LetXC = {x, y}, where g(x) ≥ g(y).
Notice that g(x) + g(y) ≥ |Gx ∪Gy| = 10, so that g(x) ≥ 5, g(y) ≥ 4. Then P (C) ≥ 15 + 12 = 27.
A contradiction.
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b(3; 2) = 15. Assume that |G| = 16. Arguing analogously to the previous solution we get
h(x) ≤ 3, g(x) ≤ 10, and for h(x) = 1, 2, 3 we have g(x) ≥ 5, 8, 10, respectively.

Further, using Lemma 7 we find C ∈ G such that P (C) ≤ 3 · 15 = 45. Set XC = {x, y}, where
g(x) ≥ g(y). Then g(x) ≥ 8, therefore p(x) ≥ 28; also p(y) ≥ 20, because g(y) ≥ 5. Thus P (C) ≥ 48.
A contradiction.

b(4; 2) = 21. Arguing analogously to the previous solutions, we find C ∈ G such that P (C) ≤ 84.
IfXC = {x, y} and g(x) ≥ g(y), then we get an analogous contradiction in every case except g(y) = 6;
in this remaining case we necessarily have g(x) = 15 and h(x) = 4 (otherwise P (C) > 84 again).

Consider the last case separately. Since h(x) = 4, there exist sets C1, C2, C3, C4 such that
h(Ci) = {x, yi}. Then there exist 22−g(x)−h(x) = 3 sets B1, B2, B3 such that x /∈ Bi and x /∈ XBi .
By the properties of the sets XCj it follows that {y1, y2, y3, y4} ⊆ Bi. Thus any two sets Bi must
intersect precisely by the elements y1, y2, y3, y4.

Finally, for each C ∈ G, which is distinct from Bi, the set XC intersects all Bi; thus one its
element is contained in two sets Bi, Bj . Thus one of the elements y1, y2, y3, y4 is contained in XC .
This implies that

∑
i h(yi) ≥ 22− 3 = 19; but then h(yi) ≥ 5 for some i. As we have noticed above,

this is impossible.
Remark. Developing these approaches the authors have proved that a(d; 2) = b(d; 2) = C2

d+2

for each d ≤ 7.
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