
Planar arrangements of lines
K. Kuyumzhiyan, E. Molchanov, I. Shnurnikov

By an arrangement of lines we mean a finite family of n distinct lines in the plane.
Suppose that these n lines cut the plane into f regions. The aim of the series of problems
below is to determine all possible values of f for a fixed n. In 1993, N. Martinov indicated
all possible numbers f and in 2007 V.I. Arnold suggested a new sketch of proof that we are
going to follow.

Before intermediate finish

We always denote by n (n > 1) and by f the number of lines in an arrangement and the
number of regions in the plane partition, respectively. Let us note that regions in the plane
partition are polygonal or unbounded.

Problem 1. For every n, find the minimal and the maximal possible values of f .
Problem 2. For every n, find all possible numbers f , if
(a) 1 6 n 6 5,
(b) n = 6, 7.

Let us denote by p the maximal number of parallel lines in an arrangement, and by q the
maximal number of concurrent (i.e. passing through one point) lines in an arrangement. Let
us denote by ri (2 6 i 6 q) the number of points which are incident to exactly i lines of an
arrangement.

Problem 3. Prove the following.
(a) f > (p+ 1)(n− p+ 1),
(b) f > q(n− q + 2),
(c) There exist arrangements such that the bounds (a) and (b) are reached.
(d) f = n+ 1 +

∑q
i=2(i− 1)ri.

Problem 4. Prove that the number of regions f cannot belong to intervals
(a) (n+ 1; 2n) for n > 3,
(b) (2n; 3n− 3) for n > 5,
(c) (3n− 2; 4n− 8) for n > 8.
Problem 5. Find maximal possible values of f if the values
(a) n and p,
(b) n and q
are given.

For p and n, where 1 6 p 6 n, denote by a(n, p) and b(n, p) the following numbers:

b(n, p) = (p+ 1)(n− p+ 1) + C2
n−p , a(n, p) = b(n, p)−min

{
p, C2

n−p

}
.

Problem 6. For any integer p, 1 6 p 6 n, and any integer f , a(n, p) 6 f 6 b(n, p),
construct a configuration of n lines splitting the plane into f regions and having at most p
parallel lines.
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Main Theorem. For a given n, the set of all possible values of f is formed by the union
of integers in the intervals [a(n, p); b(n, p)] for all p, where 1 6 p 6 n.

In other words, all the possibilities for f appear in Problem 6. However, it is not clear
why the number of regions cannot be an integer from none of the intervals [a(n, p); b(n, p)].
In fact, one of the difficulties is that for fixed n and p, there exist arrangements splitting the
plane into less than a(n, p) regions.

Problem 7. Find all the pairs (n, p) such that there exists a configuration of lines
splitting the plane into less than a(n, p) regions.

For a given n, by a gap we mean the interval (b(n, p + 1); a(n, p)) if it contains at least
one integer. The number of gaps for a given n is denoted by L(n). We enumerate the gaps
from left to right with integers from 1 to L(n).

Problem 8. (a) Give an explicit formula for L(n) (expressing it in n) for n > 3.
(b) How many integers does a gap number j contain, where 1 6 j 6 L(n)?
Problem 9. Suppose that there exists a configuration of n lines splitting the plane into

f regions, where f belongs to the gap number j. Prove that p 6 j − 1 and q 6 j.
Problem 10. Prove that

q∑
i=2

i(i− 1)ri > n(n− p).

Problem 11. (a) Prove that f > n+ 1 + n(n−p)
q

.
(b) Prove that f cannot belong to the gap number j if 1 6 j 6

√
n.

Problem 12. Prove that if p < n, then

r2 + n > 3 + r4 + 2r5 + 3r6 + · · ·+ (q − 3)rq.

Problem 13. (a) Prove that

f > 2
n(n− p)
q + 3

.

(b) Prove that f cannot belong to the gap number j if 1 6 j 6 L(n)− 2.
Problem 14. In a convex n–gon (n > 4) all the diagonals are drawn, and suppose that

no three of them are concurrent.
(a) How many intersection points of diagonals are there? (Vertices are not considered as

intersection points.)
(b) Into how many parts do the diagonals split the interior of the n–gon?
Problem 15∗. Consider an arrangement of n lines in the plane. Prove that the number

f of regions cannot belong to the two last gaps (enumerated as L(n)− 1 and L(n)).
Problem 16∗. Consider n points on the plane, not all of them being collinear. Take all

the lines containing exactly two of these points. Let m be the number of such lines. Prove
that C2

m+2 > n.
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After intermediate finish
Consider two planes α1 and α2 in the 3-dimentional space and a point O, O 6∈ α1 ∪ α2.

By a central projection we mean a transformation which maps a point X of the plane α1 to
the point of intersection of the line OX with the plane α2.

Problem 17. Consider an arrangement of lines in α1. Find the images of lines and of
regions of the plane α1 after the central projection with center O to the plane α2. You can
suppose that the arrangement has two intersecting lines.

We suppose that all the lines which are parallel to a given line l, contain the infinite
point corresponding to the direction l. The result of the central projection of the infinite
point corresponding to the direction l is the intersection point of the plane α2 with the line
passing through O parallel to l (if l is parallel to α2, then the image is the infinite point of α2

corresponding to the direction l).
Problem 18. Prove that central projection is a one-to-one correspondence between

planes considered with their infinite points. Find the image and the preimage of infinite
points of the planes α1 and α2 respectively.

Let us call by the projective plane the usual plane with its infinite points, and by an
arrangement of lines in a projective plane an arrangement of lines with their corresponding
infinite points. Here one of the lines can be infinite. For an arrangement of n lines in the
projective plane, we denote by ti the number of intersection points incident to exactly i lines,
where 2 6 i 6 n.

Problem 19. Prove that for n lines in the projective plane∑
i>2

i(i− 1)ti = n(n− 1).

The notion of the projective plane helps to explain the following similarity between
parallel and concurrent lines. Let us consider two arrangements of k + 1 lines in the usual
plane: in the first one k parallel lines intersect the (k+1)th line, in the second there are k+1
concurrent lines, see the picture.

Each of these arrangements cuts the plane into 2k+2 regions, and this fact has the following
explanation. We can add the infinite lines to the both arrangements. We will obtain two
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arrangements of k + 2 lines in the projective planes, and there exists a central projection
mapping one arrangement to another. Hence, they cut the plane into the same number of
regions. That’s why it seems more convenient to solve the problem 15 in the projective plane
instead of the usual one.

Problem 20. For an arrangement of n lines in the projective plane, define the notion of
region so that any central projection gives a one-to-one correspondence between the regions
of different projective planes. How can one verify whether two given points belong to one
region (for a fixed arrangement)?

Below, we denote the number of regions of the projective plane by f , and the maximal
number of concurrent lines in the arrangement by m.

Problem 21. Prove the following analogues of problems 3, 12, and 13.
(a)

f = 1 + t2 + 2t3 + . . .+ (n− 1)tn,

(b)
m(n−m+ 1) 6 f 6 m(n−m+ 1) + C2

n−m.

(c) If m < n, then

t2 > 3 + t4 + 2t5 + 3t6 + . . .+ (m− 3)tm.

(d) If m < n, then for every integer M , M > m, it is true that

f > 2

(
n2 − n+ 2M

M + 3

)
.

Problem 22∗. Let n > 2m + 2, and let tm > 2. Prove that f > (m + 1)(n −m). Is it
true for n = 2m+ 1?

Problem 23∗. Formulate and prove the main theorem for the arrangements of n lines
in the projective plane. Complete the proof of the main theorem for the usual plane.

Problem 24. (a) Into how many regions can the plane be divided by n circles passing
through a fixed point?

(b) For the usual sphere, let the big circles (intersections of the sphere with planes passing
through the center of the sphere) play the role of lines. Into how many regions can n big
circles cut the sphere?

The next aim is to prove the Sylvester theorem and its generalizations.

Problem 25. (The Sylvester theorem) (a) Given n non collinear points in a plane,
prove that there exists a line containing exactly two of these points.

(b) Consider an arrangement of n lines such that not all the lines are parallel and not all
are concurrent. Prove that there exists an intersection point incident to exactly two lines.

It turns out that under the assumptions of problem 25(b), there exist several points
incident to exactly two lines. To estimate their number, it is more convenient to consider
the arrangements of lines in the projective plane. For a given arrangement of lines in the
projective plane, let us denote by pj the number of regions bounded by j segments of lines.
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Note that a region bounded by j segments of lines is a polygon with j sides whenever it has
an empty intersection with the infinite line.

Problem 26. Prove that if tn = 0, then∑
i>2

(3− i)ti +
∑
j>3

(3− j)pj = 3.

Problem 27. Consider an arrangement of n lines in the projective plane such that tn = 0.
For every n 6 9, determine the minimal possible value of t2 in such arrangement.

Problem 28. (a) For every even n > 6, construct an arrangement of n lines with t2 = n
2
.

(b) For every odd n > 7, construct an arrangement of n lines with t2 = 3
[

n
4

]
.

Problem 29F. Prove that if tn = 0, then t2 > 3
7
n.

Problem 30F. (Dirak conjecture, 1951). If tn = 0, then t2 > [n
2
].

The next aim is to prove inequalities involving the numbers ti for different i.

Problem 31∗. If tn = tn−1 = tn−2 = 0, then

t2 +
3

2
t3 > 8 +

∑
i>4

(
2i− 7

1

2

)
ti.

Problem 32. Consider n points in the projective plane. Let us mark with red color the
intersection points which are incident to exactly two lines, and with blue color the intersection
points which are incident to at least three lines. If the endpoints of a line segment are of
one color, we mark this segment with the same color (if its interior does not contain other
colored points). We denote by x and y the numbers of red and blue segments, respectively.
Let us mark with green color the regions bounded by at least four segments of the given
lines and containing at least one red point on its boundary. We denote by z the number of
pairs (a green region, a blue point on its boundary). Prove that

(a)
x− y = 2t2 −

∑
i>3

iti.

(b) If the arrangement is not the union of two groups of concurrent lines, then

y + z >
3

2

∑
i>3

ti.

(c) If tn = tn−1 = tn−2 = 0, then

x+ z 6 3p4 +
∑
j>5

jpj.

Problem 33∗. Find new inequalities involving numbers ti and pj (which do not follow
trivially from problems 26 and 31, but, possibly, use problem 32).
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