
WHEN ARE ALL GROUPS OF ORDER N CYCLIC?
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A group is a nonempty set of transformations (= permutations or rearrangements of elements)
of some set such that it is closed with respect to compositions of transformations and taking
the inverse transformation. (i.e., if f , g ∈ G then f ◦ g ∈ G and f−1 ∈ G). We say that a group
G is cyclic, if there exists a transformation g ∈ G such that G = {g, g2, . . . , gn, . . . }.

This set of problems is devoted to the following intriguing question:

For which n an arbitrary group of n permutations is cyclic?

Examples of (finite) groups.
(1) The group Sn of all permutations of a n-element set. It is called a symmetric group.
(2) The group {id, (13)(24), (1234), (1432)} of transformations of a set consisting of 4 elements.
(3) Consider a square on the plane and all the transformations of the plane that map the

square onto itself. These are the identity transformation, 3 rotations and 4 symmetries; 8
transformations in all. Let the group consist of 8 permutations of the set of vertices of the
square induced by these 8 transformations.

rotationssymmetries
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π/2

Figure: transformations of a square and a cube.

(4) Consider a cube in the 3-dimensional space and all the rotations of the space mapping
the cube onto itself.

(a) Consider the group of all permutations of the set of vertices of the cube induced by
these rotations.

(b) Consider the group of all permutations of the set of edge midpoints of the cube induced
by these rotations.

Figure: the graph K3,3

(5) The group of all permutations of the 6-element set of vertices of the graph K3,3 which
are isomorphisms of the graph.
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Figure: linear transformation f1101 : Z2
2 → Z2
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(6) Consider the set Z2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)} of ordered pairs of residues modulo 2.

For any 4 residues a, b, c, d consider a transformation fabcd : Z2
2 → Z2

2 defined by the formula
fabcd(x, y) = (ax+ by, cx+ dy). The set of invertible transformations of this form is a group.
General remarks. If the condition of the problem consists of a single statement, you have

to prove this statement. If the problem looks like too difficult, try to solve the neighboring
problems, they can contain hints.
Star-mining. A team gets a star for each correct (> +.) written solution. Jury may also

award stars for elegant solutions, for solutions of difficult problems and for (some) solutions
written in TEX. The jury has infinite number of stars. A team may present the solution orally
paying 1 star for each attempt.

BEFORE. 1st series

1.1. (a) A combination lock can be opened by a 9-digit combination. It happens that if two
combinations A and B = b1b2 . . . b9 open the lock (A = B is allowed), then the combination
obtained from A by replacing its every digit k (simultaneously for all k) with the digit bk opens
the lock too. It is known that the lock can be opened by the combination 856291473 and the
combinations obtained by (multiple) applying the above rule only. How many combinations
open the lock?

(b) The same question for the following rule. If the combination A opens the lock and B
is an arbitrary combination (A = B is allowed), then the combination obtained from A by
replacing (simultaneously for each k) the digit in the combination A that equals the number of
the position of the digit k in combination B with bk.

1.2. (a) Prove that the set in the example 6 is indeed a group.
(b) What groups in the examples above are cyclic?
(c) Every group contains the identity transformation. It is called unity and is denoted by e.

1.3. (a) Construct a group that contains two permutations a and b such that ab = b−1a.
(b) The alphabet of Ababa tribe consists of two letters «a» and «b». No word change the

sense if we insert or delete at any place in this word the fragments «aab» or «bba». 4 words of
Ababa language are scratched on the rock. Prove that two of them have the same sense.

1.4. (a) Construct a group of 17 permutations numbered by numbers 0, 1, . . . , 16, such that
the number of composition of any two permutations equals the sum of the numbers of these
permutations modulo 17.

(b) Construct a group of 16 permutations numbered by numbers 1, 2, . . . , 16, such that the
number of composition of any two permutations equals the product of the numbers of these
permutations modulo 17.
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(с) Does there exist a group of 8 permutations, that can be numbered by numbers 1, 2, 4, 7,
8, 11, 13, 14 so that the number of composition of any two permutations equals the product of
the numbers of these permutations modulo 15?

1.5. Determine for the following values of n whether every group of n permutations is cyclic.
(7) 1,2,3,4,5,6,7; (8) 8; (9) 9; (10) 10; (12) 12; (15) 15; (21) 21; (1001) 1001.

Denote by |X| the number of elements in the set X. The group G is called
commutative if xy = yx for each x, y ∈ G. The order of an element a ∈ G is
the minimal positive integer n such that an = e (where e is the identity). If the
order exists then it is denoted by ord a.

1.6. (a) Fermat–Euler theorem. If G is a commutative group, e is its unity, then a|G| = e for
each a ∈ G.

(b) Every cyclic group is commutative.
(c) Is the opposite statement true?

1.7. If the number of elements of a group is prime then the group is cyclic.

1.8. (a) Find the order of each element in the group S4.
(b) The order is well-defined for each element of a finite group.
(c) If a group contains an element of order 2 then the number of elements in the group is

even.
(d) If a group contains an element of order 3 then the number of elements in the group is

divisible by 3.
(e) Lagrange theorem. The number of elements of a finite group is divisible by the order of

every its element.
(f) If the number of elements in G is even then G contains an element of order 2.

1.9. (a) If n > 2 is even then there exists a noncyclic group of n permutations.
(b) If n is divisible by the square of a prime number then there exists a noncyclic group of

n permutations.

1.10. (a) Each commutative group of 10 elements is cyclic.
(b) The same is true for each 21-element group.
(c) The same is true for each 1001-element group.
(d) For which n every commutative group of n elements is cyclic?

Figure: a permutation of type 〈1, 2, 3, 4〉
1.11. If a permutation of a (n1 + . . .+nk)-element set is a composition of nonintersecting cycles
of order n1, . . . , nk, we call it a permutation of type 〈n1, . . . , nk〉.

(a) Prove that any two permutations f and g of the same type are conjugate in the group
Sn, that means that g = b−1fb for a suitable permutation b ∈ Sn.

(b) Prove the opposite statement.
(c) The conjugate permutations have the same orders.

1.12. Let G be a group of 15 elements.
(a) G contains an element of order 3.
*(b) Each element of order 5 in G can be conjugate with its powers only.

2. BEFORE. 2nd series.

Solution of Problem 1.2. f ∈ G ⇒ f−1 ∈ G ⇒ ff−1 = e ∈ G.



4

Solution of Problem 1.5-7 for n = 3. Assume the converse: there is a noncyclic group G
consisting of 3 permutations. Denote by a one of the permutations distinct from the identity.
If a2 6= e then the permutations a, a2, a3 are distinct and hence the group G is cyclic. If a2 = e
then take a permutation b ∈ G distinct from e and a. Then the permutation ab is distinct from
e, a, b. (Indeed, obviously ab 6= a and ab 6= b. If ab = e then b = a2b = a, a contradiction.) This
contradiction proves the problem.

Solution of Problem 1.5-10. Answer: the group is not necessarily cyclic.
Consider a regular pentagon in the plane and all the isometries of the plane that map

the pentagon onto itself. These motions are the identity, 4 rotations and 5 symmetries, 10
transformations at all. Consider permutations of the vertices of the pentagon under these
transformations. These 10 permutations form a noncyclic group, and for any two symmetries s
and t we have st 6= ts. That means that the group is noncyclic, because if s = gk and t = gl

for some g, then st = ts = gk+l.

1
2

34

5 r−→
5

1

23

4
1

2

34

5 s−→
1

5

43

2

Figure: transformations of a regular 5-gon

Another solution of Problem 1.5-10. (It can be useful for solving Problem 2.1.) Let r be a
rotation by 2π/5 of the regular pentagon, s be a symmetry (see fig. 2). Then r5 = e = s2 and
sr = r−1s. Consider 10 transformations rksl, k = 0, 1, 2, 3, 4 and l = 0, 1. Due to the relation
sr = r−1s one can obtain that this set of transformations is a group. (This step is the main
difference with the previous solution. We check that the set is a group algebraically but not
geometrically. Therefore we can use the similar ideas when the objects have no geometrical
interpretations.) The same relation allows to establish that the group is noncyclic.

2.1. (a) There exists a noncyclic group of 21 elements.
(b) There exists a noncyclic group of 55 elements.
(c) If p and q are primes and q− 1 is divisible by p, then there exists a noncyclic group of pq

elements.
Hint to the problem 2.1a. Choose the relations for elements r and s that provide the set rksl, k, l ∈ Z to be a
noncyclic group of 21 element, then construct the suitable permutations.

A subgroup of the group G is a subset of G that is a group itself.

2.2. (a) Can a commutative group of 10 elements contain two elements of order 2? (This is a
hint to the problem 1.10a.)

(b) Lagrange theorem. The number of elements of a finite group is divisible by the number
of elements of any its subgrouop.

2.3. (Hint to the problem 1.12b.) Let G be a group of 15 elements and f , g ∈ G be its elements
of order 5.

(a) The sets {f, f 2, f 3, f 4} and {g, g2, g3, g4} either coincide or do not intersect.
(b) One of the elements f , g is a power of the other.

2.4. Let G be a group of 15 elements, f ∈ G be an element of order 5, b ∈ G, b−1fb = fm and
k ∈ Z, k > 0. Then b−1fkb = fkm and b−kfbk = fmk .

2.5. Let G be a group of 15 elements such that all its elements (except the unity) have order
3. Let f , g ∈ G \ {e}.

(a) The sets {f, f 2} and {g, g2} either coincide or do not intersect.
(b) If {f, f 2} 6= {g, g2}, then fg 6= gf .
(c) Every f ∈ G, f 6= e, has exactly 4 conjugate elements.
(d) This group does not exist.
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2.6. (a) If the number of elements of G equals pq, where p and q are primes, p < q and q − 1
is not divisible by p, then the group is cyclic.

(b) Let G be a group of 1001 elements and f ∈ G \ {e} is an element that is conjugate with
its powers only. Prove that G is cyclic.

3. BEFORE. Series 3

These funny problems in an abstract way describe the idea that was given in the hint to
Problem 2.1a. Formally we do not need them for our main goal.

3.1. 1 There are two letters in Cyclists’ language: a and a−1. They are called opposite.
A Word in Cyclists’ and other considered languages is defined as an ordered collection of

letters; in particular, there is an empty word – word with no letters (silence haves a sense).
The word that consists of eight letters a is indecent. The word that consists of two opposite

letters is named stumble.
In Cyclists’ and other languages that we consider sense of a word does not change after
• inserting an indecent word or a stumble or
• deleting an indecent word or a stumble.
(Scientifically, sense is equivalence class of words with respect to inserting and deleting

indecent words and stumbles operations.)
For example, words aaaa−1a and aaa are different but have the same sense.
(a) There are only 8 senses in Cyclists’ language.
(b) Cyclists speak about residue classes modulo 8. In other words, the set of all senses with

operation of concatenation is isomorphic to the set of all residue classes modulo 8 with sum
operation.

Exact wording of this statement is as follows. We may concatenate words: X and Y gives
XY . (For example, aa and aa−1a gives aaaa−1a.) The operation of concatenation of words sets
operation of concatenation of senses. So, there is a correspondence between residue classes to
senses such that residue class of XY is the sum of residue classes of words X and Y .

3.2. In order to provide secrecy the Pentagon’s workers created a language. There are four
letters a, b, a−1 and b−1. Letters a and a−1 are called opposite. Letters b and b−1 are opposite
too. Five a letters or two b letters form an indecent word. ... is an indecent word too. It consists
of 4 letters, first three letters are first three letters of abab and last three letters of this word
are last three letters of a−1bbab−1.

(a) The Pentagon’s workers language has 10 senses.
(b) They speak about isometries of regular Pentagon. Give an exact wording of this statement.

3.3. Connoisseurs’ of Perfection language has 4 letters a, b, a−1 and b−1. Three a letters or
two letters b form an indecent word. ... is an indecent word too. It has 10 letters and it is a
concatenation of 5 copies of ba.

(a) Connoisseurs’ of Perfection language has a finite number of senses.
(b) Connoisseurs of Perfection speak about a group. Give an exact wording of this statement.

3.4. (a) In Algebraists’ language there are 4 letters a, b, a−1 and b−1. We will not describe
indecent words or even tell if there is a finite number of indecent words or not because they are
indecent. Prove that algebraists speak about a group. Give an exact wording of this statement.
(This group is able to be infinite even if there is a finite number if indecent words.)

(b) If we add 2 new letters c and c−1 to the Algebraists’ language and some new indecent
words, they will all the same speak about a group.

1This is an example of an ugly mathematical problem. Understanding it’s conditions is more difficult then
solving it. However, this problem is necessary because it helps us to introduce an important construction.
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4. AFTER. Series 4

Some Solutions.
1.8. (e) The proof of the Lagrange Theorem. For x ∈ G consider the set {x, xf, xf 2, . . . , xf ord f−1}.
These elements are different by definition of order. Thus this set has ord f elements. If xfk = yf l

then y = xfk−l. Thus for different x these sets either are equal or do not intersect. So ord f
divides |G|.
1.10. (a) Denote by p the order of a nonidentity element f . If p = 10 then the group is cyclic.
Assume that p < 10. By Lagrange’s Theorem p ∈ {5, 2}. If there exists an element g of order
10/p then G = {fg, (fg)2, . . . , (fg)10}. Else there is an element g 6∈ {f, f 2, . . . , f p} of order p.
Then {fkgl}k,l∈Z is a subgroup of order p2. Contradiction to Lagrange’s Theorem.
1.11. Hint. Change the numeration of the elements of the set to transform f into g. The change
of numeration determines the required permutation b.
2.3. (a) Suppose that the two given sets intersect. Then there are integers 1 ≤ k, l ≤ 4 such
that fk = gl. Since GCD(k, 5) = 1 it follows that there is an integer m such that 5 | km − 1.
Then f = fkm = (fk)m = (gl)m = glm. This implies that the two given sets are equal.

(b) Consider 25 elements fkgl, where 1 ≤ k, l ≤ 5. Since the entire group has only 15
elements, it follows that there are 1 ≤ k, l,m, n ≤ 5 such that (k, l) 6= (m,n) and fkgl = fmgn.
Multiplying by f−m from the left and by g−l from the right, we get fk−m = gn−l. Since f and g
have order 5 it follows that the sets {f, f 2, f 3, f 4} and {g, g2, g3, g4} intersect. Then by assertion
(a) the sets coincide, and the problem follows.
2.5. (c) Hint. Take an element f 6= e. Let c(f) be the number of elements conjugate to f
(including the element f itself). Consider the set Z(f) := {g ∈ G : fg = gf}. By assertion (b)
it follows that this set is {e, f, f 2}. Now apply the following general result: c(f) · |Z(f)| = |G|.
Thus c(f) = 15/3 = 5.
2.1. (a) New hint. This group is a group of some permutations of the (49-element) set Z2

7. In
order to define this group let us represent such elements as pairs (x, y) of residue classes modulo
7. For non-negative integers k, l define a map

fk,l : Z2
7 → Z2

7 by fk,l(x, y) := (2kx, lx+ y).

Check that
• there are exactly 21 such maps;
• they form a group;
• this group is not cyclic.

2.1. (b) Hint. Observe that 25 = 33− 1. For nonnegative integers k, l define a map fk,l : Z2
11 →

Z2
11 by fk,l(x, y) := (4kx, lx+ y).

3.3. Hint. Use that Connoisseurs of Perfection are Algebraists.
3.4. Hint.Map each sense to the transformation of the set of senses defined as «left concatenation».

New problems

4.1. There exists a noncyclic group of 39 elements.

4.2. Let G be a group with 1001 elements and f ∈ G − {e}. Suppose that f is conjugated
only with its exponents. Let g 6∈ 〈f〉 := {f, f 2, . . . , fn, . . . }. Denote by q the smallest positive
integer n such that gn ∈ 〈f〉.

(a) ord g is divisible by q. (b) If g−1fg = fk then g−nfgn = fkn .
(c) g−1fg = f . (d) {fg, (fg)2, (fg)3, . . . , (fg)q ord f} is a subgroup of G.

4.3. Let G be a noncyclic group of 1001 elements.
(a) Each element of G is contained in a subgroup maximal by inclusion and different from

G.
Such subgroups are called maximal.
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(b) Each maximal subgroup is cyclic.

4.4. The commutativiser of a group G is the set

Z = Z(G) := {a ∈ G : ga = ag for any g ∈ G}

of elements that commute with all elements.
(We hope that the word “commutativiser” is more accessible for beginners than center.)
(a) Find Z(Sn) for each n = 2, 3, 4, . . .
(b) The commutativiser is a subgroup.

4.5. Let G be a noncyclic group of 1001 elements. Assume that the generator of each maximal
subgroup is conjugate not only to its powers.

(a) Every maximal subgroup contains the commutativiser.
(b) Find the number a(F ) of elements that are conjugate to some element of given maximal

subgroup F , if |F | and |Z| are known.

5. AFTER. Series 5

Hint to the problem 1.4c. Try to choose a suitable subgroup in the group of permutations of
the set {1, 2, 4, 7, 8, 11, 13, 14}.

5.1. (a) For any group G and an element g ∈ G the set

N(g) = NG(g) := {a ∈ G : ga = agk for some k}

is a subgroup.
(b) Determine NS3(g) for each g ∈ S3.
(c) The number of subgroups conjugated to 〈g〉 equals |G|/|N(g)|.

A generator of a finite cyclic group G is any element g such that G consists of powers of g.
(A generator needs not to be unique.)

5.2. Let G be a noncyclic group of 1001 elements. Assume that certain generator of each
maximal subgroup is conjugated not with its powers only.

(a) The intersection of any two maximal subgroups is exactly the center of the group.
(b) The number of subgroups conjugated to maximal subgroup F equals 1001/|F |.
(с) Denote by F̂ the number of elements of G conjugate to elements of a maximal subgroup

F and not contained in the commutativizer. Prove that 500 < F̂ ≤ 1000− |Z|.

Primitive root theorem. For any prime p there exists a non negative integer g such that all
the residues modulo p of g1, g2, g3, . . . , gp−1 ≡ 1 are distinct.

5.3. Proof of the theorem. Let p be a prime and let a be a non negative integer that is not
divisible by p.

(a) p− 1 is divisible by the minimal k > 0 for which ak ≡ 1 mod p.
(b) for any two positive integers n and a the congruence xn ≡ a mod p has at most n solutions.
(c) If p− 1 is divisible by d, then the congruence xd ≡ 1 mod p has exactly d solutions.
(d) Prove the primitive root theorem for p = 2m + 1.
(e) Prove the primitive root theorem for p = 2m · 3n + 1.
(f) Prove the primitive root theorem for an arbitrary prime p.
(g)* Is it true that the number 3 is a primitive root modulo p = 2m + 1?

5.4. For which n any group of n elements is commutative?
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6. Solutions

1.8. (d) Let a be the element of order 3. Make a list of all the elements of the finite group. Let us
cross out the elements from the list as follows. At each step, choose an element x which has not
been crossed out yet, and cross out each of the 3 elements x, xa, and xa2. This procedure never
leads to crossing out an element more than once. Indeed, assume that, say, xa has already been
crossed out. This implies that for element y chosen before we have either xa = y, or xa = ya,
or xa = ya2. But then either x = ya2, or x = y, or x = ya, respectively. Thus x must also have
been crossed out before according to our rule, a contradiction. Thus exactly 3 elements are
removed at each step. Since the group is finite, the process ends in a finite time. This implies
that the number of elements in the list (and hence in the group) is divisible by 3.
1.12. Hint. See Problem 2.3.
2.1c. This group is a group of some permutations of the (q2-element) set Z2

q. In order to define
this group let us represent such elements as pairs (x, y) of residue classes modulo q. By the
primitive root theorem there exists an element a ∈ Zq of order p. For nonnegative integers k, l
define a map fk,l : Z2

q → Z2
q by fk,l(x, y) := (akx, lx+ y) Check that

• there are exactly pq such maps;
• they form a group;
• this group is not cyclic.

3.1. Hint. Given a word, define the number of its meaning to be the difference between the
quantities of letters a and a−1 in the word modulo 8.
3.2. Hint. The bijection between the meanings and isometries of the regular pentagon is
constructed as follows. Assign to the letter a a counterclockwise rotation through 72◦ about
the center of the pentagon. To the letter b assign a suitable reflection so that the relation
a ◦ b ◦ a ◦ b−1 = id holds. Now interpret each word as the composition of the corresponding
isometries.
3.3b. First solution. This follows from problem 3.4а.
3.3b. Second solution. Connoisseurs of Perfection talk about the group of those permutations
of the vertices of a regular icosahedron which are obtained from the isometries of 3-space taking
the icosahedron into itself. That is, about the group A5.
4.2. (b) This follows by induction over n.
5.3. Hints. (b) Let us prove the following more general statement: a polynomial of degree n
cannot have more than n roots in Zp. Here by a polynomial we mean the collection of coefficients
but not the function.

Assume that a polynomial P (x) of degree n has in Zp different roots x1, . . . , xn, xn+1. Represent
P (x) as

P (x) = bn(x− x1) . . . (x− xn) + bn−1(x− x1) . . . (x− xn−1) + · · ·+ b1(x− x1) + b0

(’the Newton interpolation’). Put in the congruence P (x) ≡ 0 (p) residues x = x1, . . . , xn, xn+1

in this order. We obtain b0 ≡ b1 ≡ · · · ≡ bn−1 ≡ bn ≡ 0 (p).
The same solution can be presented in the following way. Let P be a polynomial. Then

polynomial P − P (a) is divisible by x − a, i.e. P − P (a) = (x − a)Q for some polynomial Q
such that degQ < degP . Since P (a) = 0, it follows that P = (x − a)Q for some polynomial
Q of degree less than degP . Now the required statement can be proved by induction over the
degree of the polynomial P .

(c) Obviously, polynomial xp−1 − 1 in Zp has exactly p − 1 roots and is divisible by xd − 1.
Prove that if a polynomial of degree a has a roots and is divisible by a polynomial of degree b,
then the polynomial of degree b has exactly b roots.

(d) If there are no primitive roots, then by problem 2a the congruence x2m−1 ≡ 1 (p) has
p− 1 = 2m > 2m−1 solutions.

(e),(f) Similarly to (d).
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5.4. Hint. All groups of order n are abelean if and only if the prime decomposition of this
number n = pk1

1 . . . pkl
l has the following properties:

• ki < 3;
• pi does not divide p

kj

j − 1.
You can prove this by the same way, but in the case 1 you need the following fact: any finite

abelean group is a direct product of cyclic subgroups.
The remaining problems are covered by the supplied paper [BKS].
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