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We give a simple proof of the well-known fact: any group of n-elements is cyclic if and only if n and
ϕ(n) are coprime. This paper is accessible for high-school students because no knowledge of group theory
is required. It could also be an interesting easy reading for mature mathematicians.

Introduction
We call a group a nonempty family G of transformations (i.e. permutations or rearrangements)

of some set, which family is closed with respect to composition and taking inverse transformation
(i.e. if f, g ∈ G, then f ◦ g ∈ G and f−1 ∈ G). Common term: transformation group. Cf. [A,
comment to problem 5].

If a finite group G contains an element g such that G consists of all powers of g (i.e. G =
{g, g2, . . . , gn, . . . }, then group G is called cyclic.

We prove the following theorem.

Theorem (folklore). Any group consisting of n elements is cyclic if and only if n and ϕ(n)
are coprime.

Here ϕ(n) is the number of positive integers not exceeding n and coprime to n (the Euler
function).

Note that n and ϕ(n) are coprime if and only if in the prime decomposition n = p1 . . . pk

(*) all pi are different and
(**) pi does not divide pj − 1 for any i and j.
The understanding of the proof requires no knowledge of group theory. A few necessary notions

are introduced in the course of the proof. In particular, our arguments does not use the notion
of a quotient group, as opposed to more traditional proofs (see, e.g., [B]). Our proof uses ideas
similar to [???]. One can understand how to invent this proof from [BKKSS].

Proof of the “only if” part.
If condition (*) above is violated, e.g., p1 = p2 = p, then the following group consists of n

elements and is not cyclic:{
(1, 2, . . . , p)i(p + 1, p + 2, . . . , 2p)j(2p + 1, 2p + 2, . . . , 2p + n

p2 )
k | i, j = 1, . . . , p, k = 1, . . . , n

p2

}
.

If condition (**) above is violated, e.g., p1 divides p2 − 1, then by the primitive root theorem
there is a ∈ Z∗p2

for which the powers a, a2, . . . , ap1 = 1 are different. Denote by Gp1,p2 the group

of transformations fk,l : Z2
p2
→ Z2

p2
defined by the formula fk,l(x, y) := (akx, lx + y) for k ∈ Zp1

and l ∈ Zp2 .
2 Then the following group is not cyclic (it is even nonabelian):{

f ◦ (1, 2, . . . ,
n

p1p2

)j | f ∈ Gp1,p2 , j = 1, 2, . . . ,
n

p1p2

}
. QED

Proof of the “if” part.
We use the induction on the number of prime factors of |G|. If this order is prime, then the

“if” part is implied by the following Lagrange Theorem.
The order ord a of an element a of a group with the identity element e is the minimal positive

integer n such that an = e. If the group is finite, it is clear that such n exists.

Lagrange Theorem (particular case). The number of elements of any finite group is divis-
ible by the order of any its element.

Proof. Denote the group by G. For each x ∈ G consider the set {x, xf, xf 2, . . . , xf ord f−1}. By
the definition of order these elements are different. Therefore this set contains ord f elements. If

1See update version on www.arxiv.org. We would like to acknowledge K. Kohas for useful discussions.
2In more advanced notation Gp1,p2 :=

{(
ak l
0 1

)
∈ Z2×2

p2

∣∣∣ k ∈ Zp1 , l ∈ Zp2

}
.
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xfk = yf l, then y = xfk−l. Therefore for different x these sets either coincide or are disjoint.
Thus |G| is divisible by ord f . QED

Now suppose that the number of factors is greater than one. We need the following general
version of the Lagrange Theorem.

A subgroup of a group G is a subset of G that is itself a group.

Lagrange Theorem. The number of elements of any finite group is divisible by the number
of elements of any subgroup.

Proof. Denote the group by G and the subgroup by {h1, h2, . . . , hm}. For each x ∈ G consider the
set {xh1, xh2, . . . , xhm}. This set contains m elements. If xhk = yhl, then y = xhkh

−1
l . Therefore

for different x these sets either coincide or are disjoint. Thus |G| is divisible by m. QED

A maximal subgroup of a group is a maximal by inclusion subgroup not coinciding with G
and containing more than one element. By the induction hypothesis and the Lagrange Theorem,
each maximal subgroup is cyclic.

For an element f of a group G let 〈f〉 be the set of all powers of f (including zero and negative
ones). The element f is called generating for the (cyclic) subgroup 〈f〉.

Suppose to the contrary that the group G is noncyclic. Then each element is contained in a
maximal subgroup.

Elements f, g of a group G are conjugate in G if g = b−1fb for some b ∈ G.

First case: generator f of some maximal subgroup is conjugate only to (some of) its powers.
Take h ∈ G \ 〈f〉. Then hord h ∈ 〈f〉. Let q be the minimal positive integer such that hn ∈ 〈f〉.
Take k ∈ Z such that h−1fh = fk. The inclusion hq ∈ 〈f〉 implies f = h−qfhq = fkq

(here the
last equality is proved by induction on q). Therefore kq ≡ 1 mod ord f .

By condition (*) and the Lagrange Theorem ord f is a product p1 . . . ps of different primes.
Then kq ≡ 1 mod pi for any i = 1, 2, . . . , s. Since |G| is divisible by ord h and ord h is divisible
by q, by condition (*) we obtain that q is a product of different primes. By condition (**) none
of these primes pj divides none pi − 1. Therefore q is coprime to each pi − 1. Hence there exist
integers x = xi and y = yi such that qx + (pi − 1)y = 1. Therefore k ≡ kqx+(pi−1)y ≡ 1 mod pi

for any i = 1, 2, . . . , s. Hence k ≡ 1 mod ord f , i.e., fh = hf .
Then G contains a subgroup {f ihj | 1 ≤ i ≤ ord f, 1 ≤ j ≤ q} of q ord f elements. Hence by

condition (*) and the Lagrange Theorem ord f is coprime to q. Since (fh)j = f jhj for each j, we
obtain that ord(fh) is divisible both by q and by ord f . ord(fh) = q ord f . Thus ord(fh) = q ord f .
Since the subgroup 〈f〉 is maximal, we have 〈fh〉 = G and G is cyclic. Contradiction.

Second case: generator of any maximal subgroup is conjugate not only to its powers.
The product of subsets X and Y of a group G is the set of all products xy, where x ∈ X

and y ∈ Y . If one of these subsets consists of only one element, e.g., Y = {y}, then we write Xy
instead of X{y}.

(1) Any maximal subgroup F contains the center

Z = Z(G) := {a ∈ G : ga = ag for any g ∈ G},
i.e., the set of elements commuting with each element of the group.

Proof of assertion (1). Otherwise FZ is a larger commutative subgroup. By the maximality of
F we have FZ = G, which contradicts to the assumption of the second case. QED

(2) The intersection of two maximal subgroups equals the center.

Proof of assertion (2). A nontrivial element of the intersection commutes with all elements of
both subgroups. Hence it commutes with any product of several multiples, each multiple being an
element of one of our subgroups. The set of such products is a subgroup. By the maximality of our
subgroups this subgroup coincides with the entire group. Therefore the intersection is contained
in the center.

Assertion (1) implies the converse inclusion. QED
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(3) The number of different subgroups conjugate to a maximal subgroup F (including F ) is
|G|/|F |.

Proof of assertion (3). Consider the set

N(F ) := {a ∈ G : Fa = aF}.
It is easy to verify that N(F ) is a subgroup. By the assumption of the second case N(F ) 6= G.
Since N(F ) ⊃ F , the maximality implies that N(F ) = F .

The conjugation by each element of G takes F to a conjugate subgroup. If the conjugation by
two different elements u and v takes the F to the same subgroup, i.e., u−1Fu = v−1Fv, then
Fuv−1 = uv−1F . This means that uv−1 ∈ N(F ) = F or, equivalently, u ∈ Fv. Conversely, the
condition u ∈ Fv implies u−1Fu = v−1Fv.

Clearly, |Fv| = |F |. Therefore the number of elements of G conjugation by which takes F
to a given subgroup equals |F |. Therefore the number of different subgroups conjugate to F is
precisely |F | times less than |G|. QED

(4) Denote by F̂ the number of elements of G conjugate to elements of a maximal subgroup F

and not contained in the center. Then |G|/2 ≤ F̂ < |G| − |Z|.
Proof of assertion (4). A subgroup conjugate to a maximal subgroup is also maximal. (Indeed,

if g−1Fg ⊂ F ′ ⊂ G, then F ⊂ gF ′g−1 ⊂ G.)

Therefore by (3) F̂ = (|F | − |Z|) |G||F | = |G|
(

1− |Z|
|F |

)
.

The inequality |G| > |F | implies F̂ < |G| − |Z|.
By the assumption of the second case, Z 6= F . By (1) and the Lagrange theorem, |Z| divides

|F |. Therefore F̂ ≥ |G|/2.

Conclusion of the proof of the second case: calculations. Let F1, . . . , Fn be a maximal family of
pairwise non-conjugate maximal subgroups. Recall that each element of the group is contained in
some maximal subgroup. Hence the element is conjugate to some element in certain Fi. By this

and (2) |G| = |Z|+ ∑
i F̂i. By the left inequality in (4), the number of summands is at most one.

By the right inequality in (4), one summand also gives a contradiction. QED
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