Вариант I

Задача 1. Что больше: 1 или $\frac{21}{64} + \frac{51}{154} + \frac{71}{214}$?

Ответ: Единица больше.

Первое решение.

$$\frac{21}{64} + \frac{51}{154} + \frac{71}{214} < \frac{21}{63} + \frac{51}{153} + \frac{71}{213} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1.$$

Второе решение.

$$\frac{21}{64} + \frac{51}{154} + \frac{71}{214} = \frac{21 \cdot 154 \cdot 214 + 64 \cdot 51 \cdot 214 + 64 \cdot 154 \cdot 71}{64 \cdot 154 \cdot 214} = \frac{692076 + 698496 + 699776}{2109184} = \frac{2090348}{2109184} \left[= \frac{522587}{527296} \right] < 1.$$

Задача 2. В футбольном турнире играли семь команд: каждая команда по одному разу сыграла с каждой. В следующий круг отбираются команды, набравшие тринадцать и более очков. За победу даётся 3 очка, за ничью -1 очко, за поражение -0 очков. Какое наибольшее количество команд может выйти в следующий круг?

Ответ: 4.

Решение. Всего командами сыграна $\frac{7 \cdot 6}{2} = 21$ игра, в каждой из которых разыгрывалось 2 или 3 очка. Следовательно, максимальное количество очков, которое суммарно может быть у всех команд это $21 \cdot 3 = 63$. Значит, количество вышедших в следующий этап команд n удовлетворяет неравенству $n \cdot 13 \le 63$, откуда $n \le 4$.

С другой стороны, можно привести пример турнирной таблицы, в которой 4 команды отбираются в следующий круг:

	1	2	3	4	5	6	7	Сумма
1	X	0	1	3	3	3	3	13
2	3	X	0	1	3	3	3	13
3	1	3	X	0	3	3	3	13
4	0	1	3	X	3	3	3	13
5	0	0	0	0	X	1	1	2
6	0	0	0	0	1	X	1	2
7	0	0	0	0	1	1	X	2

Задача 3. При каком наименьшем натуральном k выражение $2017 \cdot 2018 \cdot 2019 \cdot 2020 + k$ является квадратом натурального числа?

Ответ: 1.

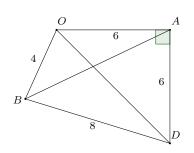
Решение. Докажем, что уже k=1 подходит. Пусть n=2018, тогда при k=1 выражение из условия равняется

$$(n-1)n(n+1)(n+2) + 1 = (n-1)(n+2) \cdot n(n+1) + 1 = (n^2+n-2)(n^2+n) + 1 = (n^2+n-1) \cdot ((n^2+n-1) - 1) \cdot ((n^2+n-1) + 1) + 1 = (n^2+n-1)^2.$$

Задача 4. Точка O лежит внутри равнобедренного прямоугольного треугольника ABC. Расстояние от неё до вершины A прямого угла равно 6, до вершины B равно 4, до вершины C равно 8. Найти площадь треугольника ABC.

Ответ: $20 + 6\sqrt{7}$.

Первое решение. Рассмотрим поворот вокруг точки A на угол 90° , который переводит точку C в точку B. Пусть при этом повороте точка Oпереходит в точку D; тогда отрезок BD является образом отрезка CO; поскольку при повороте длина отрезков не меняется, BD = CO = 8. Получаем четырёхугольник OADB, в котором OA = AD = 6, BD = 8, OB = 4, $\angle OAD = 90^{\circ}$ (см. чертёж). Дальше можно рассуждать несколькими способами.



Первый способ. Рассмотрим систему координат, в которой точка O имеет координаты (0,0), точка Aимеет координаты (6,0), точка D — координаты (6,-6). Найдём координаты точки B(x,y), учитывая, что OB = 4 и DB = 8, т.е.

$$\begin{cases} x^2 + y^2 = 16\\ (x-6)^2 + (y+6)^2 = 64 \end{cases}$$

Вычитая из первого уравнения второе, получаем 12x - 12y - 72 = -48, откуда x - y = 2. Подставляя x = y + 2 в первое уравнение, получаем $2y^2 + 4y - 12 = 0$, $y^2 + 2y - 6 = 0$, откуда $y = -1 \pm \sqrt{7}$. Поскольку (см. чертёж) точка B должна лежать по ту же сторону от прямой OA, что и точка D, то

$$y>0$$
, поэтому подходит только корень $y=-1-\sqrt{7}$, откуда $x=1-\sqrt{7}$. Наконец, $S=\frac{AB^2}{2}=\frac{(x-6)^2+y^2}{2}=\frac{(1-\sqrt{7}-6)^2+(1+\sqrt{7})^2}{2}=20+6\sqrt{7}$. Второй способ. Для начала заметим, что $OD=6\sqrt{2}$, $\angle ODA=45^\circ$. Обозначим $\angle ODB=\varphi$. Тогда

по теореме косинусов для треугольника *ODB* имеем

$$\cos \varphi = \frac{OD^2 + BD^2 - OB^2}{2 \cdot OD \cdot BD} = \frac{(6\sqrt{2})^2 + 8^2 - 4^2}{2 \cdot 6\sqrt{2} \cdot 8} = \frac{120}{2 \cdot 6\sqrt{2} \cdot 8} = \frac{5\sqrt{2}}{8},$$

а тогда $\sin \varphi = \sqrt{1 - \frac{50}{64}} = \frac{\sqrt{14}}{8}$. Теперь, по теореме косинусов для треугольника ADB, получаем

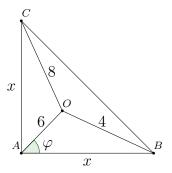
$$S = \frac{AB^2}{2} = \frac{AD^2 + BD^2 - 2 \cdot AD \cdot BD \cdot \cos(\varphi + 45^\circ)}{2} = 18 + 32 - 6 \cdot 8 \cdot \frac{\cos \varphi - \sin \varphi}{\sqrt{2}} = 20 + 6\sqrt{7}.$$

Второе решение. Пусть AB = AC = x, $\angle OAB = \varphi$. По теореме косинусов для треугольников OAB и OAC имеем:

$$4^{2} = x^{2} + 6^{2} - 12x \cos \varphi$$
$$8^{2} = x^{2} + 6^{2} - 12x \sin \varphi$$

откуда

$$12x\cos\varphi = x^2 + 20$$
$$12x\sin\varphi = x^2 - 28$$

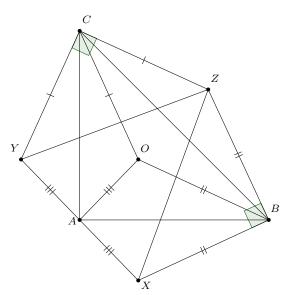


Возводя эти неравенства в квадрат, после сложения, получаем квадратное уравнение на x^2 : $144x^2 = 2x^4 - 16x^2 + 1184$, $x^4 - 80x^2 + 592 = 0$. Корнями этого уравнения являются

$$x_{1,2}^2 = 40 \pm 12\sqrt{7}.$$

Заметим, что $40-12\sqrt{7}<36$, и в этом случае x< AO, то есть точка O не будет лежать внутри треугольника, поэтому $S = \frac{x^2}{2} = 20 + 6\sqrt{7}$.

План третьего решения. Отразим точку O симметрично относительно сторон AB, AC и BC треугольника ABC; обозначим образы через X, Y и Z соответственно. (см. рисунок) Тогда AY = AX = AO, CY = CZ = CO, BX = BZ = BO. Простым счётом углов убеждаемся, что $\angle YCZ = 2\angle ACB =$ 90° , $\angle XBZ = 2\angle ABC = 90^{\circ}$, $\angle XAY = 2\angle BAC = 180^{\circ}$. Площадь пятиугольника ХҮСІВ в два раза больше площади треугольника ABC. С другой стороны, площадь XYCZBскладывается из площади двух прямоугольных треугольников YCZ и XBZ, в который нам известен катет, а также треугольника XYZ, у которого нам известны все стороны, поэтому его площадь мы можем найти, например, воспользовавшись формулой Герона.



Задача 5. Обозначим $f(x) = 9x^2 + 8x - 2$. Решите уравнение f(f(x)) = x.

Ответ:
$$-1$$
, $\frac{2}{9}$, $\frac{-3 \pm \sqrt{13}}{6}$.

Первое решение. Число x удовлетворяет уравнению f(f(x)) = x тогда и только тогда, когда найдётся такое число y, что выполнена система

$$\begin{cases} 9x^2 + 8x - 2 = y \\ 9y^2 + 8y - 2 = x \end{cases}.$$

Вычитая из первого равенства второе, после преобразований получаем 9(x-y)(x+y+1) = 0, откуда или y = x, или y = -x - 1. Подставим y в первое уравнение системы. В первом случае получим уравнени $9x^2+7x-2=0$, откуда x=-1 или $x=\frac{2}{9}$. Во втором случае получим уравнение $9x^2+9x-1=0$, откуда $x=\frac{-9\pm\sqrt{117}}{2\cdot 9}=\frac{-3\pm\sqrt{13}}{6}$

$$9x^2 + 9x - 1 = 0$$
, откуда $x = \frac{-9 \pm \sqrt{117}}{2 \cdot 9} = \frac{-3 \pm \sqrt{13}}{6}$

План второго решения. Честно посчитаем f(f(x)) - x:

$$(9(9x^2+8x-2)^2+8(9x^2+8x-2)-2)-x = 729x^4+1296x^3+324x^2-225x+18 = 9(81x^4+144x^3+36x^2-25x+2),$$

т.е. исходное уравнение равносильно

$$81x^4 + 144x^3 + 36x^2 - 25x + 2 = 0.$$

Теперь у него можно найти два рациональных корня, пользуясь теоремой о рациональных корнях многочлена с целыми коэффициентами: $ecnu\ p/q,\ (p,q)=1$ — корень многочлена с целыми коэффиииентами, то р является делителем свободного члена, а q-cтаршего коэффицента. Получаем:

$$81x^4 + 144x^3 + 36x^2 - 25x + 2 = (x+1)(9x-2)(9x^2 + 9x - 1),$$

корни же третьей скобки можно найти, используя формулу через дискриминант.

Задача 6. Найдите все значения, которые может принимать выражение

$$3 \arcsin x - 2 \arccos y$$

при условии $x^2 + y^2 = 1$.

Ответ:
$$\left[-\frac{5\pi}{2}; \frac{\pi}{2}\right]$$
.

Решение. Заметим, что $x^2 + y^2 = 1$ тогда и только тогда, когда существует некоторое $\varphi \in [0; 2\pi]$ такое, что $x = \sin \varphi$, $y = \cos \varphi$. Тогда выражение из условия приобретает вид

$$3 \arcsin \sin \varphi - 2 \arccos \cos \varphi.$$
 (*)

• $\varphi \in \left[0; \frac{\pi}{2}\right]$: тогда $\arcsin \varphi = \varphi, \arccos \cos \varphi = \varphi,$ а

$$3 \arcsin \varphi - 2 \arccos \cos \varphi = 3\varphi - 2\varphi = \varphi;$$

следовательно, при $\varphi \in \left[0; \frac{\pi}{2}\right]$ выражение (*) принимает все значения из промежутка $\left[0; \frac{\pi}{2}\right]$;

• $\varphi \in \left[\frac{\pi}{2}; \pi\right]$: тогда $\arcsin \sin \varphi = \pi - \varphi$, $\arccos \cos \varphi = \varphi$, а

$$3 \arcsin \varphi - 2 \arccos \cos \varphi = 3(\pi - \varphi) - 2\varphi = 3\pi - 5\varphi;$$

следовательно, при $\varphi \in \left[\frac{\pi}{2}; \pi\right]$ выражение (*) принимает все значения из промежутка $\left[-2\pi; \frac{\pi}{2}\right]$;

• $\varphi \in \left[\pi; \frac{3\pi}{2}\right]$: тогда $\arcsin \varphi = \pi - \varphi$, $\arccos \cos \varphi = 2\pi - \varphi$, а

$$3 \arcsin \varphi - 2 \arccos \cos \varphi = 3(\pi - \varphi) - 2(2\pi - \varphi) = -\pi - \varphi;$$

следовательно, при $\varphi\in\left[\pi;\frac{3\pi}{2}\right]$ выражение (*) принимает все значения из промежутка $\left[-\frac{5\pi}{2};-2\pi\right];$

• $\varphi \in \left[\frac{3\pi}{2}; 2\pi\right]$: тогда $\arcsin \varphi = \varphi - 2\pi$, $\arccos \cos \varphi = 2\pi - \varphi$, а

$$3 \arcsin \varphi - 2 \arccos \cos \varphi = 3(\varphi - 2\pi) - 2(2\pi - \varphi) = -10\pi + 5\varphi;$$

следовательно, при $\varphi \in \left[\frac{3\pi}{2}; 2\pi\right]$ выражение (*) принимает все значения из промежутка $\left[-\frac{5\pi}{2}; 0\right]$.

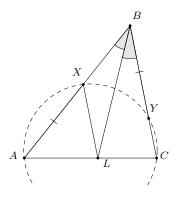
Суммируя всё вышесказанное, получаем, что выражение (*) при $\varphi \in [0; 2\pi]$ принимает все значения из промежутка $\left[-\frac{5\pi}{2}; \frac{\pi}{2}\right]$.

Задача 7. Дан треугольник ABC. На отрезках AB и BC выбраны точки X и Y соответственно так, что AX = BY. Оказалось, что точки A, X, Y и C лежат на одной окружности. Пусть BL — биссектриса треугольника ABC (L на отрезке AC). Докажите, что $XL \parallel BC$.

Решение. Из того, что точки A, X, Y и C лежат на одной окружности, следует, что $BX \cdot BA = BY \cdot BC$, или AB : BC = BY : BX. Из того, что BL — биссектриса треугольника ABC следует, что AL : LC = AB : BC. Тогда

$$AL:LC=AB:BC=BY:BX=AX:XB.$$

откуда по теореме, обратной теореме Фалеса, получаем, что $XL \parallel BC$, что и требовалось.



Задача 8. При каких значениях параметра a уравнение

$$\log_2(2x^2 + (2a+1)x - 2a) - 2\log_4(x^2 + 3ax + 2a^2) = 0$$

имеет два различных корня, сумма квадратов которых больше 4?

Ответ: $(-\infty; -1) \cup (\frac{3}{5}; 1)$.

Решение. Перепишем исходное уравнение в виде

$$\log_2(2x^2 + (2a+1)x - 2a) = \log_2(x^2 + 3ax + 2a^2).$$

Заметим, что это уравнение эквивалентно системе

$$\begin{cases} 2x^2 + (2a+1)x - 2a = x^2 + 3ax + 2a^2 \\ x^2 + 3ax + 2a^2 > 0 \end{cases},$$

или

$$\begin{cases} x^2 - (a-1)x - 2a(a+1) = 0 & (1) \\ (x+a)(x+2a) > 0 & (2) \end{cases}.$$

По теореме, обратной теореме Виета, корнями уравнения (1) являются числа $x_1 = 2a$ и $x_2 = -a - 1$. Поскольку у уравнения должно быть два различных корня, получаем следующие условия:

$$\begin{cases} (2a+a)(2a+2a) > 0\\ (-a-1+a)(-a-1+2a) > 0\\ 2a \neq -a-1 \end{cases},$$

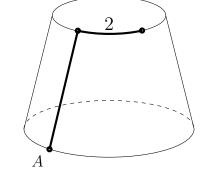
то есть $a \neq 0, \ a \neq -\frac{1}{3}, \ a < 1.$ Сумма квадратов x_1 и x_2 должна быть больше 4, то есть $4a^2 + (a+1)^2 > 4, \ 5a^2 + 2a - 3 > 0$, откуда $a \in (-\infty; -1) \cup (\frac{3}{5}; \infty)$. Пересекая все четыре полученных условия, получаем ответ.

Задача 9. В школе имеется три кружка: по математике, по физике и по информатике. Директор как-то заметил, что среди участников кружка по математике ровно 1/6 часть ходит ещё и на кружок по физике, а 1/8 часть — на кружок по информатике; среди участников кружка по физике ровно 1/3 часть ходит ещё и на кружок по математике, а ровно 1/5 — на кружок по информатике; наконец, среди участников кружка по информатике ровно 1/7 часть ходит на кружок по математике. А какая часть участников кружка по информатике ходит на кружок по физике?

Ответ: 4/35.

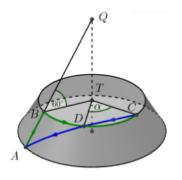
Решение. Пусть участников кружка по информатике x; тогда детей, которые ходят одновременно на кружок по математике и информатике x/7; тогда участников кружка по математике 8x/7, а детей, которые ходят одновременно на кружок по математике и по физике -4x/21; тогда участников кружка по физике 4x/7, а детей, которые ходят одновременно на кружок по информатике и по физике — 4x/35.

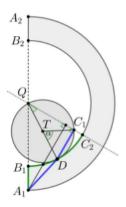
Задача 10. Назовём горой усечённый прямой круговой конус с длиной окружности нижнего основания 8, а верхнего основания — 6. Склон горы наклонён под углом 60° к плоскости основания. На окружности нижнего основания лежит точка А. Турист начинает подъём по склону из точки A к ближайшей точке верхнего основания, а затем продолжает свой путь по краю верхнего основания, и проходит расстояние 2 (см. рис). После этого он возвращается в точку A кратчайшим маршрутом. Чему равна длина обратного пути?



Otbet: $\frac{4\sqrt{3}}{\pi}$

Решение. Обозначим (см рисунок слева) вершину конуса буквой Q, центр меньшего основания — T, точку на верхнем основании, ближайшую к A-B, начальную точку обратного маршрута — C. Пусть D — последняя точку обратного маршрута на окружности верхнего основания (возможно, Dсовпадает с C или B). Угол $\angle DTC$ обозначим за α .





Рассмотрим развёртку боковой поверхности конуса (см рисунок справа), верхнее основание приложим к точке D так, чтобы оно касалось развёртки боковой поверхности. Сохраним обозначения точек, а в случае раздвоения используем индексы (так, к примеру, точки C_1 и C_2 на рисунке справа соответствуют точке C на рисунке слева). Любая дуга окружность верхнего основания переходит в дугу окружности в два раза большего радиуса, поскольку $QB = \frac{TB}{\cos 60^{\circ}} = 2TB$. Значит, угловая мера будет уменьшаться в два раза. В частности, окружность верхней грани перейдет в полуокружность, т.е. боковая поверхность перейдёт в часть плоскости, ограниченной двумя концентрическими полуокружностями и диаметром, проходящим через их концы, QD будет диаметром верхнего основания.

Угол $\angle DQC_1 = \frac{\angle DTC_1}{2} = \frac{\alpha}{2}$. По сказанному выше, угловые меры дуг $\overrightarrow{DC_1}$ и $\overrightarrow{DC_2}$ относятся 2:1. Это значит, что $\angle DQC_2 = \frac{\angle DTC_1}{2} = \frac{\alpha}{2}$. Тогда $\angle DQC_1 = \angle DQC_2$, а потому точка C_1 лежит на прямой QC_2 . Учитывая, что QD — диаметр, получаем, что C_1 — основание перпендикуляра, опущенного из точки D на прямую QC_2 . Тогда длина маршрута, идущего по верхнему основанию (рисунок слева) из C в D и по боковой поверхности из D в A будет не меньше длины ломаной (рисунок справа) C_1DA_1 и не меньше длины перпендикуляра, опущенного из A_1 на прямую QC_2 .

Докажем, что существует маршрут равный длине этого перпендикуляра. Для этого достаточно показать, что проекция точки A_1 лежит на отрезке QC_2 , поскольку в этом случае перпендикуляр пересекает полуокружность $B_1C_2B_2$. Точка пересечения дает точку D для кратчайшего маршрута, а перпендикуляр изображает на развертке кратчайший маршрут. Так как путь по краю верхнего основания составляет треть длины окружности верхнего основания, то $\angle B_1QC_2 = 60^\circ$. Тогда отношение QC_2 к QA_1 равно отношению длин окружностей нижнего и верхнего оснований и равно $\frac{3}{4}$, что больше $\cos 60^\circ$. Значит проекция QA_1 на прямую QC_2 меньше длины отрезка QC_2 , что и требовалось.

больше $\cos 60^\circ$. Значит проекция QA_1 на прямую QC_2 меньше длины отрезка QC_2 , что и требовалось. Радиус нижнего основания $R=\frac{8}{2\pi}$. Тогда $QA=\frac{R}{\cos 60^\circ}=\frac{8}{\pi}$. Из прямоугольного треугольника (рисунок 2) длина перпендикуляра равна

$$QA_1 \cdot \sin \angle B_1 QC_2 = QA_1 \cdot \sin 60^\circ = QA \cdot \frac{\sqrt{3}}{2} = \frac{4\sqrt{3}}{\pi}.$$

Вариант II

Задача 1. Что больше: 1 или $\frac{27}{80} + \frac{46}{137} + \frac{63}{188}$?

Ответ: Сумма дробей больше.

Первое решение.

$$\frac{27}{80} + \frac{46}{137} + \frac{63}{188} > \frac{27}{81} + \frac{46}{138} + \frac{63}{189} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1.$$

Второе решение.

$$\frac{27}{80} + \frac{46}{137} + \frac{63}{188} = \frac{27 \cdot 137 \cdot 188 + 80 \cdot 46 \cdot 188 + 80 \cdot 137 \cdot 63}{80 \cdot 137 \cdot 188} = \frac{695412 + 691840 + 690480}{2060480} = \frac{2077732}{2060480} \left[= \frac{519433}{515120} \right] > 1.$$

Задача 2. В футбольном турнире играли семь команд: каждая команда по одному разу сыграла с каждой. В следующий круг отбираются команды, набравшие двенадцать и более очков. За победу даётся 3 очка, за ничью -1 очко, за поражение -0 очков. Какое наибольшее количество команд может выйти в следующий круг?

Ответ: 5.

Решение. Всего командами сыграна $\frac{7 \cdot 6}{2} = 21$ игра, в каждой из которых разыгрывалось 2 или 3 очка. Следовательно, максимальное количество очков, которое суммарно может быть у всех команд это $21 \cdot 3 = 63$. Значит, количество вышедших в следующий этап команд n удовлетворяет неравенству $n \cdot 12 \le 63$, откуда $n \le 5$.

С другой стороны, можно привести пример турнирной таблицы, в которой 5 команд отбираются в следующий круг:

	1	2	3	4	5	6	7	Сумма
1	X	0	0	3	3	3	3	12
2	3	X	0	0	3	3	3	12
3	3	3	X	0	0	3	3	12
4	0	3	3	X	0	3	3	12
5	0	0	3	3	X	3	3	12
6	0	0	0	0	0	X	1	1
7	0	0	0	0	0	1	X	1

Задача 3. При каком наименьшем натуральном k выражение $2019 \cdot 2020 \cdot 2021 \cdot 2022 + k$ является квадратом натурального числа?

Ответ: 1.

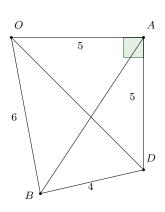
Решение. Докажем, что уже k=1 подходит. Пусть n=2020, тогда при k=1 выражение из условия равняется

$$(n-1)n(n+1)(n+2) + 1 = (n-1)(n+2) \cdot n(n+1) + 1 = (n^2 + n - 2)(n^2 + n) + 1 = (n^2 + n - 1) - 1)((n^2 + n - 1) + 1) + 1 = (n^2 + n - 1)^2.$$

Задача 4. Точка O лежит внутри равнобедренного прямоугольного треугольника ABC. Расстояние от неё до вершины A прямого угла равно 5, до вершины B равно 6, до вершины C равно 4. Найти площадь треугольника ABC.

Ответ: $13 + \frac{5}{2}\sqrt{23}$.

Первое решение. Рассмотрим поворот вокруг точки A на угол 90° , который переводит точку C в точку B. Пусть при этом повороте точка O переходит в точку D; тогда отрезок BD является образом отрезка CO; поскольку при повороте длина отрезков не меняется, BD = CO = 4. Получаем четырёхугольник OADB, в котором OA = AD = 5, BD = 4, OB = 6, $\angle OAD = 90^{\circ}$ (см. чертёж). Дальше можно рассуждать несколькими способами.



Первый способ. Рассмотрим систему координат, в которой точка O имеет координаты (0,0), точка A имеет координаты (5,0), точка D — координаты (5,-5). Найдём координаты точки B(x,y), учитывая, что OB = 6 и DB = 4, т.е.

$$\begin{cases} x^2 + y^2 = 36\\ (x-5)^2 + (y+5)^2 = 16 \end{cases}$$

Вычитая из первого уравнения второе, получаем 10x-10y-50=20, откуда x-y=7. Подставляя x=y+7 в первое уравнение, получаем $2y^2+14y+13=0$, откуда $y=\frac{-7\pm\sqrt{23}}{2},\ x=\frac{7\pm\sqrt{23}}{2}$. Поскольку точка B должна лежать по ту же сторону относительно AD, что и точка O, то $y=\frac{-7-\sqrt{23}}{2},\ x=\frac{7-\sqrt{23}}{2}$.

Наконец,
$$S = \frac{AB^2}{2} = \frac{(x-5)^2 + y^2}{2} = \frac{((7-\sqrt{23})/2 - 5)^2 + ((7+\sqrt{23})/2)^2}{2} = 13 + \frac{5}{2}\sqrt{23}.$$

Второй способ. Для начала заметим, что $OD=5\sqrt{2},\ \angle ODA=45^\circ.$ Обозначим $\angle ODB=\varphi.$ Тогда по теореме косинусов для треугольника ODB имеем

$$\cos\varphi = \frac{OD^2 + BD^2 - OB^2}{2 \cdot OD \cdot BD} = \frac{(5\sqrt{2})^2 + 4^2 - 6^2}{2 \cdot 5\sqrt{2} \cdot 4} = \frac{30}{2 \cdot 5\sqrt{2} \cdot 4} = \frac{3\sqrt{2}}{8},$$

а тогда $\sin \varphi = \sqrt{1 - \frac{18}{64}} = \frac{\sqrt{46}}{8}$. Теперь, по теореме косинусов для треугольника ADB, получаем

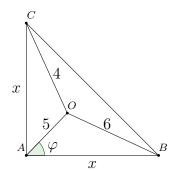
$$S = \frac{AB^2}{2} = \frac{AD^2 + BD^2 - 2 \cdot AD \cdot BD \cdot \cos(\varphi + 45^\circ)}{2} = \frac{25}{2} + 8 - 5 \cdot 4 \cdot \frac{\cos \varphi - \sin \varphi}{\sqrt{2}} = 13 + \frac{5}{2}\sqrt{23}.$$

Второе решение. Пусть AB = AC = x, $\angle OAB = \varphi$. По теореме косинусов для треугольников OAB и OAC имеем:

$$6^{2} = x^{2} + 5^{2} - 10x \cos \varphi$$
$$4^{2} = x^{2} + 5^{2} - 10x \sin \varphi$$

откуда

$$10x\cos\varphi = x^2 - 11$$
$$10x\sin\varphi = x^2 + 9$$

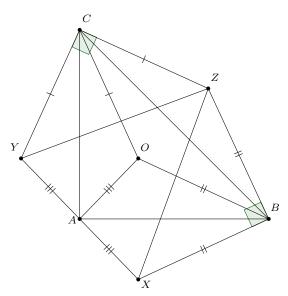


Возводя эти неравенства в квадрат, после сложения, получаем квадратное уравнение на x^2 : $100x^2 = 2x^4 - 4x^2 + 202$, $x^4 - 52x^2 + 101 = 0$. Корнями этого уравнения являются

$$x_{1,2}^2 = 26 \pm 5\sqrt{23}$$
.

Заметим, что $26-5\sqrt{23}<25$, и в этом случае x< AO, то есть точка O не будет лежать внутри треугольника, поэтому $S=\frac{x^2}{2}=13+\frac{5}{2}\sqrt{23}$.

План третьего решения. Отразим точку O симметрично относительно сторон AB, AC и BC треугольника ABC; обозначим образы через X, Y и Z соответственно. (см. рисунок) Тогда AY = AX = AO, CY = CZ = CO, BX = BZ = BO. Простым счётом углов убеждаемся, что $\angle YCZ = 2\angle ACB =$ 90° , $\angle XBZ = 2\angle ABC = 90^{\circ}$, $\angle XAY = 2\angle BAC = 180^{\circ}$. Площадь пятиугольника ХҮСІВ в два раза больше площади треугольника ABC. С другой стороны, площадь XYCZBскладывается из площади двух прямоугольных треугольников YCZ и XBZ, в который нам известен катет, а также треугольника XYZ, у которого нам известны все стороны, поэтому его площадь мы можем найти, например, воспользовавшись формулой Герона.



Задача 5. Обозначим $f(x) = 3x^2 - 7x - 11$. Решите уравнение f(f(x)) = x.

Ответ:
$$-1$$
, $\frac{11}{3}$, $\frac{3 \pm 4\sqrt{3}}{3}$.

Первое решение. Число x удовлетворяет уравнению f(f(x)) = x тогда и только тогда, когда найдётся такое число y, что выполнена система

$$\begin{cases} 3x^2 - 7x - 11 = y \\ 3y^2 - 7y - 11 = x \end{cases}.$$

Вычитая из первого равенства второе, после преобразований получаем 3(x-y)(x+y-2)=0, откуда или y = x, или y = -x + 2. Подставим y в первое уравнение системы. В первом случае получим уравнени $3x^2-8x-11=0$, откуда x=-1 или $x=\frac{11}{3}$. Во втором случае получим уравнение $3x^2-6x-13=0$, откуда $x=\frac{6\pm\sqrt{192}}{2\cdot 3}=\frac{3\pm4\sqrt{3}}{3}$

$$3x^2-6x-13=0$$
, откуда $x=\frac{6\pm\sqrt{192}}{2\cdot 3}=\frac{3\pm4\sqrt{3}}{3}$

План второго решения. Честно посчитаем f(f(x)) - x:

$$(3(3x^2 - 7x - 11)^2 - 7(3x^2 - 7x - 11) - 11) - x = 27x^4 - 126x^3 - 72x^2 + 510x + 429 = 3(9x^4 - 42x^3 - 24x^2 + 170x + 143),$$

т.е. исходное уравнение равносильно

$$9x^4 - 42x^3 - 24x^2 + 170x + 143 = 0.$$

Теперь у него можно найти два рациональных корня, пользуясь теоремой о рациональных корнях многочлена с целыми коэффициентами: $ecnu\ p/q,\ (p,q)=1$ — корень многочлена с целыми коэффиииентами, то p является делителем свободного члена, а q-старшего коэффицента. Получаем:

$$9x^4 - 42x^3 - 24x^2 + 170x + 143 = (x+1)(3x-11)(3x^2 - 6x - 13),$$

корни же третьей скобки можно найти, используя формулу через дискриминант.

Задача 6. Найдите все значения, которые может принимать выражение

$$4 \arcsin x - \arccos y$$

при условии $x^2 + y^2 = 1$.

Otbet:
$$\left[-\frac{5\pi}{2}; \frac{3\pi}{2}\right]$$
.

Решение. Заметим, что $x^2 + y^2 = 1$ тогда и только тогда, когда существует некоторое $\varphi \in [0; 2\pi]$ такое, что $x = \sin \varphi$, $y = \cos \varphi$. Тогда выражение из условия приобретает вид

$$4\arcsin\sin\varphi - \arccos\cos\varphi. \tag{*}$$

• $\varphi \in \left[0; \frac{\pi}{2}\right]$: тогда $\arcsin \varphi = \varphi$, $\arccos \cos \varphi = \varphi$, а

$$4 \arcsin \sin \varphi - \arccos \cos \varphi = 4\varphi - \varphi = 3\varphi;$$

следовательно, при $\varphi \in \left[0; \frac{\pi}{2}\right]$ выражение (*) принимает все значения из промежутка $\left[0; \frac{3\pi}{2}\right]$;

• $\varphi \in \left[\frac{\pi}{2}; \pi\right]$: тогда $\arcsin \sin \varphi = \pi - \varphi$, $\arccos \cos \varphi = \varphi$, а

$$4\arcsin \varphi - \arccos \cos \varphi = 4(\pi - \varphi) - \varphi = 4\pi - 5\varphi;$$

следовательно, при $\varphi \in \left[\frac{\pi}{2}; \pi\right]$ выражение (*) принимает все значения из промежутка $\left[-\pi; \frac{3\pi}{2}\right]$;

• $\varphi \in \left[\pi; \frac{3\pi}{2}\right]$: тогда $\arcsin \varphi = \pi - \varphi$, $\arccos \cos \varphi = 2\pi - \varphi$, а

$$4\arcsin \varphi - \arccos \cos \varphi = 4(\pi - \varphi) - (2\pi - \varphi) = 2\pi - 3\varphi;$$

следовательно, при $\varphi \in \left[\pi; \frac{3\pi}{2}\right]$ выражение (*) принимает все значения из промежутка $\left[-\frac{5\pi}{2}; -\pi\right];$

• $\varphi \in \left[\frac{3\pi}{2}; 2\pi\right]$: тогда $\arcsin \varphi = \varphi - 2\pi$, $\arccos \cos \varphi = 2\pi - \varphi$, а

$$4\arcsin \varphi - \arccos \cos \varphi = 4(\varphi - 2\pi) - (2\pi - \varphi) = -10\pi + 5\varphi;$$

следовательно, при $\varphi \in \left[\frac{3\pi}{2}; 2\pi\right]$ выражение (*) принимает все значения из промежутка $\left[-\frac{5\pi}{2}; 0\right]$.

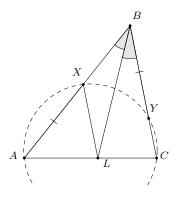
Суммируя всё вышесказанное, получаем, что выражение (*) при $\varphi \in [0; 2\pi]$ принимает все значения из промежутка $\left[-\frac{5\pi}{2}; \frac{3\pi}{2}\right]$.

Задача 7. Дан треугольник ABC. На отрезках AB и BC выбраны точки X и Y соответственно так, что AX = BY. Оказалось, что точки A, X, Y и C лежат на одной окружности. Пусть L — такая точка на отрезке AC, что $XL \parallel BC$. Докажите, что BL — биссектриса треугольника ABC.

Решение. Из того, что точки A, X, Y и C лежат на одной окружности, следует, что $BX \cdot BA = BY \cdot BC$, или AB : BC = BY : BX. Из того, что $XL \parallel BC$ следует, что AL : LC = AX : XB. Тогда

$$AL:LC=AX:X=BY:BX=AB:BC.$$

откуда по теореме о биссектрисе треугольника, получаем, что BL — биссектриса треугольника ABC, что и требовалось.



Задача 8. При каких значениях параметра a уравнение

$$2\log_{16}(2x^2 - x - 2a - 4a^2) - \log_4(x^2 - ax - 2a^2) = 0$$

имеет два различных корня, сумма квадратов которых принадлежит интервалу (0;4)?

Ответ: $\left(-\frac{1}{2}; -\frac{1}{3}\right) \cup \left(-\frac{1}{3}; 0\right) \cup \left(0; \frac{3}{5}\right)$.

Решение. Перепишем исходное уравнение в виде

$$\log_4(2x^2 - x - 2a - 4a^2) = \log_4(x^2 - ax - 2a^2).$$

Заметим, что это уравнение эквивалентно системе

$$\begin{cases} 2x^2 - x - 2a - 4a^2 = x^2 - ax - 2a^2 \\ x^2 - ax - 2a^2 > 0 \end{cases}$$

или

$$\begin{cases} x^2 + (a-1)x - 2a(a+1) = 0 & (1) \\ (x+a)(x-2a) > 0 & (2) \end{cases}.$$

По теореме, обратной теореме Виета, корнями уравнения (1) являются числа $x_1 = -2a$ и $x_2 = a+1$. Поскольку у уравнения должно быть два различных корня, получаем следующие условия:

$$\begin{cases} (-2a+a)(-2a-2a) > 0\\ (a+1+a)(a+1-2a) > 0\\ -2a \neq a+1 \end{cases}$$

то есть $a \neq 0, a \neq -\frac{1}{3}, a \in (-\frac{1}{2}; 1).$

Сумма квадратов x_1 и x_2 должна принадлежать интервалу (0;4), то есть $0 < 4a^2 + (a+1)^2 < 4$,

$$\begin{cases} 5a^2 + 2a + 1 > 0 \\ 5a^2 + 2a - 3 < 0 \end{cases},$$

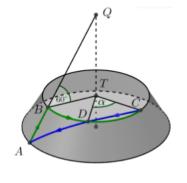
откуда $a \in \mathbb{R}$, $a \in \left(-1; \frac{3}{5}\right)$. Пересекая все пять полученных условий, получаем ответ.

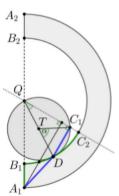
Задача 9. В лагерь приехали школьники, среди которых были Петя, Вася и Тимофей, не знакомые друг с другом, однако у каждого из которых были знакомые среди приехавших детей. Петя заметил, что ровно 1/2 его знакомых знакомы с Васей, а ровно 1/7 – с Тимофеем; Вася заметил, что 1/3 его знакомых знакомы с Петей, а 1/6 — с Тимофеем; наконец, Тимофей заметил, что ровно 1/5 его знакомых знакомы с Петей. А какую часть среди знакомых Тимофея составляют знакомые Васи? Ответ: 7/20.

Решение. Пусть знакомых у Тимофея x; тогда общих знакомых Пети и Тимофея x/5; знакомых Пети тогда 7x/5, а общих знакомых Пети и Васи — 7x/10; знакомых Васи тогда 21x/10, а общих знакомых Васи и Тимофея тогда — 7x/20.

Задача 10. Назовём горой усечённый прямой круговой конус с длиной окружности нижнего основания 10, а верхнего основания — 9. Склон горы наклонён под углом 60° к плоскости основания. На окружности нижнего основания лежит точка A. Турист начинает подъём по склону из точки A к ближайшей точке верхнего основания, а затем продолжает свой путь по краю верхнего основания, и проходит расстояние 3 (см. рис). После этого он возвращается в точку A кратчайшим маршрутом. Чему равна длина обратного пути?

Решение. Обозначим (см рисунок слева) вершину конуса буквой Q, центр меньшего основания — T, точку на верхнем основании, ближайшую к A-B, начальную точку обратного маршрута — C. Пусть D — последняя точку обратного маршрута на окружности верхнего основания (возможно, D совпадает с C или B). Угол $\angle DTC$ обозначим за α .





A

Рассмотрим развёртку боковой поверхности конуса (см рисунок справа), верхнее основание приложим к точке D так, чтобы оно касалось развёртки боковой поверхности. Сохраним обозначения точек, а в случае раздвоения используем индексы (так, к примеру, точки C_1 и C_2 на рисунке справа соответствуют точке C на рисунке слева). Любая дуга окружность верхнего основания переходит в

дугу окружности в два раза большего радиуса, поскольку $QB = \frac{TB}{\cos 60^{\circ}} = 2TB$. Значит, угловая мера будет уменьшаться в два раза. В частности, окружность верхней грани перейдет в полуокружность, т.е. боковая поверхность перейдёт в часть плоскости, ограниченной двумя концентрическими полуокружностями и диаметром, проходящим через их концы, QD будет диаметром верхнего основания. Угол $\angle DQC_1 = \frac{\angle DTC_1}{2} = \frac{\alpha}{2}$. По сказанному выше, угловые меры дуг DC_1 и DC_2 относятся 2:1. Это значит, что $\angle DQC_2 = \frac{\angle DTC_1}{2} = \frac{\alpha}{2}$. Тогда $\angle DQC_1 = \angle DQC_2$, а потому точка C_1 лежит на прямой QC_2 . Учитывая, что QD — диаметр, получаем, что C_1 — основание перпендикуляра, опущенного из точки D на прямую QC_2 . Тогда длина маршрута, идущего по верхнему основанию (рисунок слева) из C в D и по боковой поверхности из D в A будет не меньше длины ломаной (рисунок справа)

Докажем, что существует маршрут равный длине этого перпендикуляра. Для этого достаточно показать, что проекция точки A_1 лежит на отрезке QC_2 , поскольку в этом случае перпендикуляр пересекает полуокружность $B_1C_2B_2$. Точка пересечения дает точку D для кратчайшего маршрута, а перпендикуляр изображает на развертке кратчайший маршрут. Так как путь по краю верхнего основания составляет треть длины окружности верхнего основания, то $\angle B_1QC_2=60^\circ$. Тогда отношение QC_2 к QA_1 равно отношению длин окружностей нижнего и верхнего оснований и равно $\frac{9}{10}$, что больше $\cos 60^\circ$. Значит проекция QA_1 на прямую QC_2 меньше длины отрезка QC_2 , что и требовалось.

 C_1DA_1 и не меньше длины перпендикуляра, опущенного из A_1 на прямую QC_2 .

больше $\cos 60^\circ$. Значит проекция QA_1 на прямую QC_2 меньше длины отрезка QC_2 , что и требовалось. Радиус нижнего основания $R=\frac{10}{2\pi}$. Тогда $QA=\frac{R}{\cos 60^\circ}=\frac{10}{\pi}$. Из прямоугольного треугольника (рисунок 2) длина перпендикуляра равна

$$QA_1 \cdot \sin \angle B_1 QC_2 = QA_1 \cdot \sin 60^\circ = QA \cdot \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{\pi}.$$

Вариант III

Задача 1. Что больше: 1 или $\frac{23}{93} + \frac{41}{165} + \frac{71}{143}$?

Ответ: Единица больше.

Первое решение.

$$\frac{23}{93} + \frac{41}{165} + \frac{71}{143} < \frac{23}{92} + \frac{41}{164} + \frac{71}{142} = \frac{1}{4} + \frac{1}{4} + \frac{1}{2} = 1.$$

Второе решение.

$$\frac{23}{93} + \frac{41}{165} + \frac{71}{143} = \frac{23 \cdot 165 \cdot 143 + 93 \cdot 41 \cdot 143 + 93 \cdot 165 \cdot 71}{93 \cdot 165 \cdot 143} =$$

$$= \frac{542685 + 545259 + 1089495}{2194335} = \frac{2177439}{2194335} \left[= \frac{65983}{66495} \right] < 1.$$

Задача 2. В футбольном турнире играли восемь команд: каждая команда по одному разу сыграла с каждой. В следующий круг отбираются команды, набравшие пятнадцать и более очков. За победу даётся 3 очка, за ничью -1 очко, за поражение -0 очков. Какое наибольшее количество команд может выйти в следующий круг?

Ответ: 5.

Решение. Всего командами сыграна $\frac{8\cdot 7}{2} = 28$ игр, в каждой из которых разыгрывалось 2 или 3 очка. Следовательно, максимальное количество очков, которое суммарно может быть у всех команд это $28\cdot 3 = 84$. Значит, количество вышедших в следующий этап команд n удовлетворяет неравенству $n\cdot 15\leqslant 84$, откуда $n\leqslant 5$.

С другой стороны, можно привести пример турнирной таблицы, в которой 5 команд отбираются в следующий круг:

	1	2	3	4	5	6	7	8	Сумма
1	X	0	0	3	3	3	3	3	15
2	3	X	0	0	3	3	3	3	15
3	3	3	X	0	0	3	3	3	15
4	0	3	3	X	0	3	3	3	15
5	0	0	3	3	X	3	3	3	15
6	0	0	0	0	0	X	1	1	2
7	0	0	0	0	0	1	X	1	2
8	0	0	0	0	0	1	1	X	2

Задача 3. При каком наименьшем натуральном k выражение $2018 \cdot 2019 \cdot 2020 \cdot 2021 + k$ является квадратом натурального числа?

Ответ: 1.

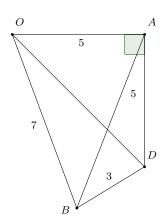
Решение. Докажем, что уже k=1 подходит. Пусть n=2019, тогда при k=1 выражение из условия равняется

$$(n-1)n(n+1)(n+2)+1 = (n-1)(n+2) \cdot n(n+1)+1 = (n^2+n-2)(n^2+n)+1 = (n^2+n-1) - 1)((n^2+n-1)+1)+1 = (n^2+n-1)^2.$$

Задача 4. Точка O лежит внутри равнобедренного прямоугольного треугольника ABC. Расстояние от неё до вершины A прямого угла равно 5, до вершины B равно 7, до вершины C равно 3. Найти площадь треугольника ABC.

Ответ:
$$\frac{29}{2} + \frac{5}{2}\sqrt{17}$$
.

Первое решение. Рассмотрим поворот вокруг точки A на угол 90° , который переводит точку C в точку B. Пусть при этом повороте точка O переходит в точку D; тогда отрезок BD является образом отрезка CO; поскольку при повороте длина отрезков не меняется, BD = CO = 3. Получаем четырёхугольник OADB, в котором OA = AD = 5, BD = 3, OB = 7, $\angle OAD = 90^{\circ}$ (см. чертёж). Дальше можно рассуждать несколькими способами.



Первый способ. Рассмотрим систему координат, в которой точка O имеет координаты (0,0), точка A имеет координаты (5,0), точка D — координаты (5,-5). Найдём координаты точки B(x,y), учитывая, что OB = 7 и DB = 3, т.е.

$$\begin{cases} x^2 + y^2 = 49\\ (x-5)^2 + (y+5)^2 = 9 \end{cases}$$

Вычитая из первого уравнения второе, получаем 10x-10y-50=40, откуда x-y=9. Подставляя x=y+9 в первое уравнение, получаем $2y^2+18y+32=0,\ y^2+9y+16=0$ откуда $y=\frac{-9\pm\sqrt{17}}{2},$ $x=\frac{9\pm\sqrt{17}}{2}$. Поскольку точка B должна лежать по ту же сторону относительно AD, что и точка O, то $y=\frac{-9-\sqrt{17}}{2},\ x=\frac{9-\sqrt{17}}{2}$.

Наконец,
$$S = \frac{AB^2}{2} = \frac{(x-5)^2 + y^2}{2} = \frac{((9-\sqrt{17})/2 - 5)^2 + ((9+\sqrt{17})/2)^2}{2} = \frac{29}{2} + \frac{5}{2}\sqrt{17}$$
.

Второй способ. Для начала заметим, что $OD = 5\sqrt{2}$, $\angle ODA = 45^{\circ}$. Обозначим $\angle ODB = \varphi$. Тогда по теореме косинусов для треугольника ODB имеем

$$\cos\varphi = \frac{OD^2 + BD^2 - OB^2}{2 \cdot OD \cdot BD} = \frac{(5\sqrt{2})^2 + 3^2 - 7^2}{2 \cdot 5\sqrt{2} \cdot 3} = \frac{10}{2 \cdot 5\sqrt{2} \cdot 3} = \frac{\sqrt{2}}{6},$$

а тогда $\sin \varphi = \sqrt{1-\frac{2}{36}} = \frac{\sqrt{34}}{6}$. Теперь, по теореме косинусов для треугольника ADB, получаем

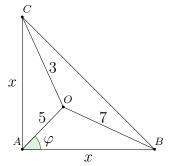
$$S = \frac{AB^2}{2} = \frac{AD^2 + BD^2 - 2 \cdot AD \cdot BD \cdot \cos(\varphi + 45^\circ)}{2} = \frac{25}{2} + \frac{9}{2} - 5 \cdot 3 \cdot \frac{\cos\varphi - \sin\varphi}{\sqrt{2}} = \frac{29}{2} + \frac{5}{2}\sqrt{17}.$$

Второе решение. Пусть AB = AC = x, $\angle OAB = \varphi$. По теореме косинусов для треугольников OAB и OAC имеем:

$$7^{2} = x^{2} + 5^{2} - 10x \cos \varphi$$
$$3^{2} = x^{2} + 5^{2} - 10x \sin \varphi$$

откуда

$$10x\cos\varphi = x^2 - 24$$
$$10x\sin\varphi = x^2 + 16$$

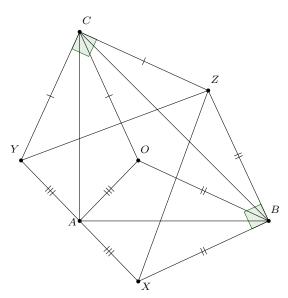


Возводя эти неравенства в квадрат, после сложения, получаем квадратное уравнение на x^2 : $100x^2=2x^4-16x^2+832, x^4-58x^2+416=0$. Корнями этого уравнения являются

$$x_{1,2}^2 = 29 \pm 5\sqrt{17}.$$

Заметим, что $29-5\sqrt{17}<25$, и в этом случае x< AO, то есть точка O не будет лежать внутри треугольника, поэтому $S=\frac{x^2}{2}=\frac{29}{2}+\frac{5}{2}\sqrt{17}.$

План третьего решения. Отразим точку O симметрично относительно сторон AB, AC и BC треугольника ABC; обозначим образы через X, Y и Z соответственно. (см. рисунок) Тогда AY = AX = AO, CY = CZ = CO, BX = BZ = BO. Простым счётом углов убеждаемся, что $\angle YCZ = 2\angle ACB = 90^{\circ}$, $\angle XBZ = 2\angle ABC = 90^{\circ}$, $\angle XAY = 2\angle BAC = 180^{\circ}$. Площадь пятиугольника XYCZB в два раза больше площади треугольника ABC. С другой стороны, площадь XYCZB складывается из площади двух прямоугольных треугольников YCZ и XBZ, в который нам известен катет, а также треугольника XYZ, у которого нам известны все стороны, поэтому его площадь мы можем найти, например, воспользовавшись формулой Герона.



Задача 5. Обозначим $f(x) = 7x^2 + 6x - 2$. Решите уравнение f(f(x)) = x.

Ответ:
$$-1$$
, $\frac{2}{7}$, $\frac{-7 \pm \sqrt{77}}{14}$.

Первое решение. Число x удовлетворяет уравнению f(f(x)) = x тогда и только тогда, когда найдётся такое число y, что выполнена система

$$\begin{cases} 7x^2 + 6x - 2 = y \\ 7y^2 + 6y - 2 = x \end{cases}.$$

Вычитая из первого равенства второе, после преобразований получаем 7(x-y)(x+y+1)=0, откуда или y=x, или y=-x-1. Подставим y в первое уравнение системы. В первом случае получим уравнени $7x^2+5x-2=0$, откуда x=-1 или $x=\frac{2}{7}$. Во втором случае получим уравнение

$$7x^2 + 7x - 1 = 0$$
, откуда $x = \frac{-7 \pm \sqrt{77}}{2 \cdot 7} = \frac{-7 \pm \sqrt{77}}{14}$

План второго решения. Честно посчитаем f(f(x)) - x:

$$(7(7x^2+6x-2)^2+6(7x^2+6x-2)-2)-x = 343x^4+588x^3+98x^2-133x+14 = 7(49x^4+84x^3+14x^2-19x+2),$$

т.е. исходное уравнение равносильно

$$49x^4 + 84x^3 + 14x^2 - 19x + 2 = 0.$$

Теперь у него можно найти два рациональных корня, пользуясь теоремой о рациональных корнях многочлена с целыми коэффициентами: $ecnu\ p/q$, $(p,q)=1-\kappa openb$ многочлена с целыми коэффициентами, то р является делителем свободного члена, а q-cmapuero коэффициента. Получаем:

$$49x^4 + 84x^3 + 14x^2 - 19x + 2 = (x+1)(7x-2)(7x^2 + 7x - 1),$$

корни же третьей скобки можно найти, используя формулу через дискриминант.

Задача 6. Найдите все значения, которые может принимать выражение

$$2 \arcsin x - \arccos y$$

при условии $x^2 + y^2 = 1$.

Ответ:
$$\left[-\frac{3\pi}{2}; \frac{\pi}{2}\right]$$
.

Решение. Заметим, что $x^2 + y^2 = 1$ тогда и только тогда, когда существует некоторое $\varphi \in [0; 2\pi]$ такое, что $x = \sin \varphi$, $y = \cos \varphi$. Тогда выражение из условия приобретает вид

$$2\arcsin\sin\varphi - \arccos\cos\varphi. \tag{*}$$

• $\varphi \in \left[0; \frac{\pi}{2}\right]$: тогда $\arcsin \varphi = \varphi$, $\arccos \cos \varphi = \varphi$, а

$$2\arcsin\sin\varphi - \arccos\cos\varphi = 2\varphi - \varphi = \varphi;$$

следовательно, при $\varphi \in \left[0; \frac{\pi}{2}\right]$ выражение (*) принимает все значения из промежутка $\left[0; \frac{\pi}{2}\right]$;

• $\varphi \in \left[\frac{\pi}{2}; \pi\right]$: тогда $\arcsin \varphi = \pi - \varphi$, $\arccos \cos \varphi = \varphi$, а

$$2 \arcsin \varphi - \arccos \cos \varphi = 2(\pi - \varphi) - \varphi = 2\pi - 3\varphi;$$

следовательно, при $\varphi \in \left[\frac{\pi}{2}; \pi\right]$ выражение (*) принимает все значения из промежутка $\left[-\pi; \frac{\pi}{2}\right]$;

• $\varphi \in \left[\pi; \frac{3\pi}{2}\right]$: тогда $\arcsin \varphi = \pi - \varphi$, $\arccos \cos \varphi = 2\pi - \varphi$, а

$$2 \arcsin \varphi - \arccos \cos \varphi = 2(\pi - \varphi) - (2\pi - \varphi) = -\varphi;$$

следовательно, при $\varphi \in \left[\pi; \frac{3\pi}{2}\right]$ выражение (*) принимает все значения из промежутка $\left[-\frac{3\pi}{2}; -\pi\right];$

• $\varphi \in \left[\frac{3\pi}{2}; 2\pi\right]$: тогда $\arcsin \varphi = \varphi - 2\pi$, $\arccos \cos \varphi = 2\pi - \varphi$, а

$$2\arcsin\sin\varphi - \arccos\cos\varphi = 2(\varphi - 2\pi) - (2\pi - \varphi) = -6\pi + 3\varphi;$$

следовательно, при $\varphi \in \left[\frac{3\pi}{2}; 2\pi\right]$ выражение (*) принимает все значения из промежутка $\left[-\frac{3\pi}{2}; 0\right]$.

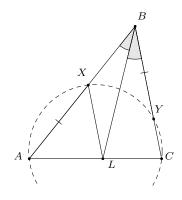
Суммируя всё вышесказанное, получаем, что выражение (*) при $\varphi \in [0; 2\pi]$ принимает все значения из промежутка $\left[-\frac{3\pi}{2}; \frac{\pi}{2}\right]$.

Задача 7. Дан треугольник ABC. Пусть BL — биссектриса треугольника ABC (L на отрезке AC), X — такая точка на отрезке AB, что $XL \parallel BC$. На отрезке BC нашлась точка Y такая, что AX = BY. Докажите, что точки A, X, Y и C лежат на одной окружности.

Решение. Из того, что BL — биссектриса треугольника ABC следует, что AL:LC=AB:BC. Из $XL\parallel BC$ следует, что AL:LC=AX:XB. Тогда

$$BY: BX = AX: XB = AL: LC = AB: BC.$$

то есть $BX \cdot BA = BY \cdot BC$. Следовательно, по одному из критериев вписанного четырёхугольника, точки A, X, Y и C лежат на одной окружности, что и требовалось.



Задача 8. При каких значениях параметра a уравнение

$$\log_3(2x^2 - x + 2a - 4a^2) + \log_{1/3}(x^2 + ax - 2a^2) = 0$$

имеет два различных корня, сумма квадратов которых меньше 1?

Ответ: $(0; \frac{1}{3}) \cup (\frac{1}{3}; \frac{2}{5})$.

Решение. Перепишем исходное уравнение в виде

$$\log_3(2x^2 - x + 2a - 4a^2) = \log_3(x^2 + ax - 2a^2).$$

Заметим, что это уравнение эквивалентно системе

$$\begin{cases} 2x^2 - x + 2a - 4a^2 = x^2 + ax - 2a^2 \\ x^2 + ax - 2a^2 > 0 \end{cases}$$

или

$$\begin{cases} x^2 - (a+1)x - 2a(a-1) = 0 & (1) \\ (x-a)(x+2a) > 0 & (2) \end{cases}$$

По теореме, обратной теореме Виета, корнями уравнения (1) являются числа $x_1 = 2a$ и $x_2 = -a + 1$. Поскольку у уравнения должно быть два различных корня, получаем следующие условия:

$$\begin{cases} (2a-a)(2a+2a) > 0\\ (-a+1-a)(-a+1+2a) > 0\\ 2a \neq -a+1 \end{cases}$$

то есть $a \neq 0$, $a \neq \frac{1}{3}$, $a \in (-1; \frac{1}{2})$.

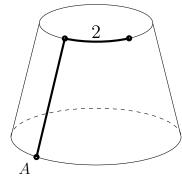
Сумма квадратов x_1 и x_2 должна быть меньше 1, то есть $4a^2 + (a-1)^2 < 1$, $5a^2 - 2a < 0$, откуда $a \in (0; \frac{2}{5})$. Пересекая все четыре полученных условия, получаем ответ.

Задача 9. На конференции присутствовали несколько учёных, некоторые из которых говорят на английском языке, некоторые на французском, а некоторые – на немецком. Устроители конференции заметили, что среди тех, кто говорит на английском ровно 1/5 говорит на французском, а ровно 1/3 — на немецком; среди тех, кто говорит на французском ровно 1/8 говорит на английском, а ровно 1/2 — на немецком; наконец, среди тех, кто говорит на немецком, ровно 1/6 говорит и на английском. А какую часть среди тех, кто говорит на немецком составляют те, кто говорит и на французском?

Ответ: 2/5.

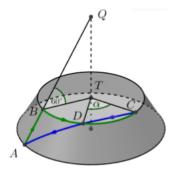
Решение. Пусть на немецком говорят x учёных. Тогда одновременно на немецком и английском говорят x/6 учёных; тогда на английском говорят x/2 учёных, а одновременно на английском и французском — x/10 учёных; тогда на французском говорят 4x/5 учёных, а на французском и немецком — 2x/5.

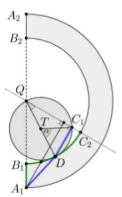
Задача 10. Назовём горой усечённый прямой круговой конус с длиной окружности нижнего основания 8, а верхнего основания -6. Склон горы наклонён под углом 60° к плоскости основания. На окружности нижнего основания лежит точка A. Турист начинает подъём по склону из точки A к ближайшей точке верхнего основания, а затем продолжает свой путь по краю верхнего основания, и проходит расстояние 2 (см. рис). После этого он возвращается в точку A кратчайшим маршрутом. Чему равна длина обратного пути?



Ответ: $\frac{4\sqrt{3}}{\pi}$

Решение. Обозначим (см рисунок слева) вершину конуса буквой Q, центр меньшего основания — T, точку на верхнем основании, ближайшую к A-B, начальную точку обратного маршрута — C. Пусть D — последняя точку обратного маршрута на окружности верхнего основания (возможно, D совпадает с C или B). Угол $\angle DTC$ обозначим за α .





Рассмотрим развёртку боковой поверхности конуса (см рисунок справа), верхнее основание приложим к точке D так, чтобы оно касалось развёртки боковой поверхности. Сохраним обозначения точек, а в случае раздвоения используем индексы (так, к примеру, точки C_1 и C_2 на рисунке справа соответствуют точке C на рисунке слева). Любая дуга окружность верхнего основания переходит в дугу окружности в два раза большего радиуса, поскольку $QB = \frac{TB}{\cos 60^{\circ}} = 2TB$. Значит, угловая мера будет уменьшаться в два раза. В частности, окружность верхней грани перейдет в полуокружность,

т.е. боковая поверхность перейдёт в часть плоскости, ограниченной двумя концентрическими полуокружностями и диаметром, проходящим через их концы, QD будет диаметром верхнего основания. Угол $\angle DQC_1 = \frac{\angle DTC_1}{2} = \frac{\alpha}{2}$. По сказанному выше, угловые меры дуг DC_1 и DC_2 относятся 2:1.

Угол $\angle DQC_1 = \frac{\angle DTC_1}{2} = \frac{\alpha}{2}$. По сказанному выше, угловые меры дуг DC_1 и DC_2 относятся 2:1. Это значит, что $\angle DQC_2 = \frac{\angle DTC_1}{2} = \frac{\alpha}{2}$. Тогда $\angle DQC_1 = \angle DQC_2$, а потому точка C_1 лежит на прямой QC_2 . Учитывая, что QD — диаметр, получаем, что C_1 — основание перпендикуляра, опущенного из точки D на прямую QC_2 . Тогда длина маршрута, идущего по верхнему основанию (рисунок слева) из C в D и по боковой поверхности из D в A будет не меньше длины ломаной (рисунок справа) C_1DA_1 и не меньше длины перпендикуляра, опущенного из A_1 на прямую QC_2 .

Докажем, что существует маршрут равный длине этого перпендикуляра. Для этого достаточно показать, что проекция точки A_1 лежит на отрезке QC_2 , поскольку в этом случае перпендикуляр пересекает полуокружность $B_1C_2B_2$. Точка пересечения дает точку D для кратчайшего маршрута, а перпендикуляр изображает на развертке кратчайший маршрут. Так как путь по краю верхнего основания составляет треть длины окружности верхнего основания, то $\angle B_1QC_2 = 60^\circ$. Тогда отношение QC_2 к QA_1 равно отношению длин окружностей нижнего и верхнего оснований и равно $\frac{3}{4}$, что больше $\cos 60^\circ$. Значит проекция QA_1 на прямую QC_2 меньше длины отрезка QC_2 , что и требовалось.

больше $\cos 60^\circ$. Значит проекция QA_1 на прямую QC_2 меньше длины отрезка QC_2 , что и требовалось. Радиус нижнего основания $R=\frac{8}{2\pi}$. Тогда $QA=\frac{R}{\cos 60^\circ}=\frac{8}{\pi}$. Из прямоугольного треугольника (рисунок 2) длина перпендикуляра равна

$$QA_1 \cdot \sin \angle B_1 QC_2 = QA_1 \cdot \sin 60^\circ = QA \cdot \frac{\sqrt{3}}{2} = \frac{4\sqrt{3}}{\pi}.$$

Вариант IV

Задача 1. Что больше: 1 или $\frac{18}{71} + \frac{47}{187} + \frac{59}{117}$?

Ответ: Сумма дробей больше.

Первое решение.

$$\frac{18}{71} + \frac{47}{187} + \frac{59}{117} > \frac{18}{72} + \frac{47}{188} + \frac{59}{118} = \frac{1}{4} + \frac{1}{4} + \frac{1}{2} = 1.$$

Второе решение.

$$\frac{18}{71} + \frac{47}{187} + \frac{59}{117} = \frac{18 \cdot 187 \cdot 117 + 71 \cdot 47 \cdot 117 + 71 \cdot 187 \cdot 59}{71 \cdot 187 \cdot 117} =$$

$$= \frac{393822 + 390429 + 783343}{1553409} = \frac{1567594}{1553409} > 1.$$

Задача 2. В футбольном турнире играли шесть команд: каждая команда по одному разу сыграла с каждой. В следующий круг отбираются команды, набравшие двенадцать и более очков. За победу даётся 3 очка, за ничью -1 очко, за поражение -0 очков. Какое наибольшее количество команд может выйти в следующий круг?

Ответ: 3.

Решение. Всего командами сыграна $\frac{6 \cdot 5}{2} = 15$ игр, в каждой из которых разыгрывалось 2 или 3 очка. Следовательно, максимальное количество очков, которое суммарно может быть у всех команд это $15 \cdot 3 = 45$. Значит, количество вышедших в следующий этап команд n удовлетворяет неравенству $n \cdot 12 \le 45$, откуда $n \le 3$.

С другой стороны, можно привести пример турнирной таблицы, в которой 3 команды отбираются в следующий круг:

	1	2	3	4	5	6	Сумма
1	X	0	3	3	3	3	12
2	3	X	0	3	3	3	12
3	0	3	X	3	3	3	12
4	0	0	0	X	1	1	2
5	0	0	0	1	X	1	2
6	0	0	0	1	1	X	2

Задача 3. При каком наименьшем натуральном k выражение $2016 \cdot 2017 \cdot 2018 \cdot 2019 + k$ является квадратом натурального числа?

Ответ 1

Решение. Докажем, что уже k=1 подходит. Пусть n=2017, тогда при k=1 выражение из условия равняется

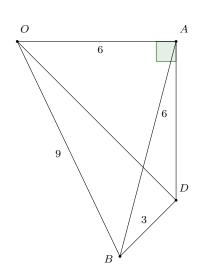
$$(n-1)n(n+1)(n+2) + 1 = (n-1)(n+2) \cdot n(n+1) + 1 = (n^2 + n - 2)(n^2 + n) + 1 = (n^2 + n - 1) - 1)((n^2 + n - 1) + 1) + 1 = (n^2 + n - 1)^2.$$

Задача 4. Точка O лежит внутри равнобедренного прямоугольного треугольника ABC. Расстояние от неё до вершины A прямого угла равно 6, до вершины B равно 9, до вершины C равно 3. Найти площадь треугольника ABC.

Ответ:
$$\frac{45}{2} + 9\sqrt{2}$$
.

Первое решение. Рассмотрим поворот вокруг точки A на угол 90° , который переводит точку C в точку B. Пусть при этом повороте точка Oпереходит в точку D; тогда отрезок BD является образом отрезка CO; поскольку при повороте длина отрезков не меняется, BD = CO = 8. Получаем четырёхугольник OADB, в котором OA = AD = 6, BD = 3, OB = 9, $\angle OAD = 90^{\circ}$ (см. чертёж). Дальше можно рассуждать несколькими спосо-

Первый способ. Рассмотрим систему координат, в которой точка О имеет координаты (0,0), точка A имеет координаты (6,0), точка D — координаты (6,-6). Найдём координаты точки B(x,y), учитывая, что OB=9 и DB=3, T.e.



$$\begin{cases} x^2 + y^2 = 81\\ (x-6)^2 + (y+6)^2 = 9 \end{cases}$$

Вычитая из первого уравнения второе, получаем 12x - 12y - 72 = 72, откуда x - y = 12. Подставляя x=y+12 в первое уравнение, получаем $2y^2+24y+63=0$, откуда $y=\frac{-12\pm3\sqrt{2}}{2}$, $x=\frac{12\pm3\sqrt{2}}{2}$. Поскольку точка B должна лежать по ту же сторону относительно AD, что и точка O, то $y=\frac{-12-3\sqrt{2}}{2}$, $x=\frac{12-3\sqrt{2}}{2}$. Наконец, $S=\frac{AB^2}{2}=\frac{(x-6)^2+y^2}{2}=\frac{((12-3\sqrt{2})/2-6)^2+((12+3\sqrt{2})/2)^2}{2}=\frac{45}{2}+9\sqrt{2}$.

Наконец,
$$S = \frac{AB^2}{2} = \frac{(x-6)^2 + y^2}{2} = \frac{((12-3\sqrt{2})/2-6)^2 + ((12+3\sqrt{2})/2)^2}{2} = \frac{45}{2} + 9\sqrt{2}$$
.

 $Bторой\ cnocoб.$ Для начала заметим, что $OD=6\sqrt{2},\ \angle ODA=45^{\circ}.$ Заметим, что $OD^2+BD^2=6\sqrt{2}$ $72 + 9 = 81 = OB^2$. Тогда по теореме, обратной теореме Пифагора, $\angle ODB = 90^\circ$, а $\angle ADB = 135^\circ$. Тогда по теореме косинусов для треугольника ADB:

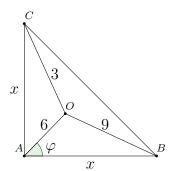
$$S = \frac{AB^2}{2} = \frac{AD^2 + BD^2 - 2 \cdot AD \cdot BD \cdot \cos 135^{\circ}}{2} = \frac{36 + 9 - 36\sqrt{2}}{2} = \frac{45}{2} + 9\sqrt{2}.$$

Второе решение. Пусть AB = AC = x, $\angle OAB = \varphi$. По теореме косинусов для треугольников OAB и OAC имеем:

$$9^{2} = x^{2} + 6^{2} - 12x \cos \varphi$$
$$3^{2} = x^{2} + 6^{2} - 12x \sin \varphi$$

откуда

$$12x\cos\varphi = x^2 - 45$$
$$12x\sin\varphi = x^2 + 27$$

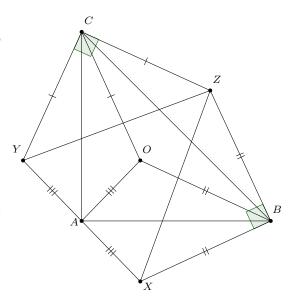


Возводя эти неравенства в квадрат, после сложения, получаем квадратное уравнение на x^2 : $144x^2 = 2x^4 - 36x^2 + 2754$, $x^4 - 90x^2 + 1377 = 0$. Корнями этого уравнения являются

$$x_{1,2}^2 = 45 \pm 18\sqrt{2}$$
.

Заметим, что $45-18\sqrt{2}<36$, и в этом случае x< AO, то есть точка O не будет лежать внутри треугольника, поэтому $S = \frac{x^2}{2} = \frac{45}{2} + 9\sqrt{2}$.

План третьего решения. Отразим точку O симметрично относительно сторон AB, AC и BC треугольника ABC; обозначим образы через X, Y и Z соответственно. (см. рисунок) Тогда AY = AX = AO, CY = CZ = CO, BX = BZ = BO. Простым счётом углов убеждаемся, что $\angle YCZ = 2\angle ACB = 90^{\circ}$, $\angle XBZ = 2\angle ABC = 90^{\circ}$, $\angle XAY = 2\angle BAC = 180^{\circ}$. Площадь пятиугольника XYCZB в два раза больше площади треугольника ABC. С другой стороны, площадь XYCZB складывается из площади двух прямоугольных треугольников YCZ и XBZ, в который нам известен катет, а также треугольника XYZ, у которого нам известны все стороны, поэтому его площадь мы можем найти, например, воспользовавшись формулой Герона.



Задача 5. Обозначим $f(x) = 4x^2 + 7x - 10$. Решите уравнение f(f(x)) = x.

Ответ: $1, -\frac{5}{2}, -1 \pm \sqrt{3}$.

Первое решение. Число x удовлетворяет уравнению f(f(x)) = x тогда и только тогда, когда найдётся такое число y, что выполнена система

$$\begin{cases} 4x^2 + 7x - 10 = y \\ 4y^2 + 7y - 10 = x \end{cases}.$$

Вычитая из первого равенства второе, после преобразований получаем 4(x-y)(x+y+2)=0, откуда или y=x, или y=-x-2. Подставим y в первое уравнение системы. В первом случае получим уравнени $4x^2+6x-10=0$, откуда x=1 или $x=-\frac{5}{2}$. Во втором случае получим уравнение $4x^2+8x-8=0$, $x^2+2x-2=0$ откуда $x=-1\pm\sqrt{3}$.

План второго решения. Честно посчитаем f(f(x)) - x:

$$(4(4x^2+7x-10)^2+7(4x^2+7x-10)-10)-x=64x^4+224x^3-96x^2-512x+320=32(2x^4+7x^3-3x^2-16x+10),$$

т.е. исходное уравнение равносильно

$$2x^4 + 7x^3 - 3x^2 - 16x + 10 = 0.$$

Теперь у него можно найти два рациональных корня, пользуясь теоремой о рациональных корнях многочлена с целыми коэффициентами: $ecnu\ p/q$, $(p,q)=1-\kappa openb$ многочлена с целыми коэффициентами, то р является делителем свободного члена, а q-cmapuero коэффицента. Получаем:

$$2x^4 + 7x^3 - 3x^2 - 16x + 10 = (x - 1)(2x + 5)(x^2 + 2x - 2),$$

корни же третьей скобки можно найти, например, используя формулу через дискриминант.

Задача 6. Найдите все значения, которые может принимать выражение

$$5 \arcsin x - 2 \arccos y$$

при условии $x^2 + y^2 = 1$.

Otbet:
$$\left[-\frac{7\pi}{2}; \frac{3\pi}{2}\right]$$
.

Решение. Заметим, что $x^2+y^2=1$ тогда и только тогда, когда существует некоторое $\varphi\in[0;2\pi]$ такое, что $x=\sin\varphi,\,y=\cos\varphi.$ Тогда выражение из условия приобретает вид

$$5 \arcsin \sin \varphi - 2 \arccos \cos \varphi.$$
 (*)

• $\varphi \in \left[0; \frac{\pi}{2}\right]$: тогда $\arcsin \varphi = \varphi$, $\arccos \cos \varphi = \varphi$, а

$$5 \arcsin \varphi - 2 \arccos \cos \varphi = 5\varphi - 2\varphi = 3\varphi;$$

следовательно, при $\varphi \in \left[0; \frac{\pi}{2}\right]$ выражение (*) принимает все значения из промежутка $\left[0; \frac{3\pi}{2}\right]$;

• $\varphi \in \left[\frac{\pi}{2}; \pi\right]$: тогда $\arcsin \varphi = \pi - \varphi$, $\arccos \cos \varphi = \varphi$, а

$$5 \arcsin \varphi - 2 \arccos \cos \varphi = 5(\pi - \varphi) - 2\varphi = 5\pi - 7\varphi;$$

следовательно, при $\varphi \in \left[\frac{\pi}{2}; \pi\right]$ выражение (*) принимает все значения из промежутка $\left[-2\pi; \frac{3\pi}{2}\right]$;

• $\varphi \in \left[\pi; \frac{3\pi}{2}\right]$: тогда $\arcsin \varphi = \pi - \varphi$, $\arccos \cos \varphi = 2\pi - \varphi$, а

$$5 \arcsin \varphi - 2 \arccos \cos \varphi = 5(\pi - \varphi) - 2(2\pi - \varphi) = \pi - 3\varphi;$$

следовательно, при $\varphi \in \left[\pi; \frac{3\pi}{2}\right]$ выражение (*) принимает все значения из промежутка $\left[-\frac{7\pi}{2}; -2\pi\right];$

• $\varphi \in \left[\frac{3\pi}{2}; 2\pi\right]$: тогда $\arcsin \varphi = \varphi - 2\pi$, $\arccos \cos \varphi = 2\pi - \varphi$, а

$$5\arcsin \varphi - 2\arccos \cos \varphi = 5(\varphi - 2\pi) - 2(2\pi - \varphi) = -14\pi + 7\varphi;$$

следовательно, при $\varphi \in \left[\frac{3\pi}{2}; 2\pi\right]$ выражение (*) принимает все значения из промежутка $\left[-\frac{7\pi}{2}; 0\right]$.

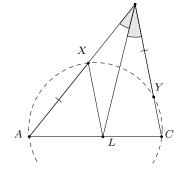
Суммируя всё вышесказанное, получаем, что выражение (*) при $\varphi \in [0; 2\pi]$ принимает все значения из промежутка $\left[-\frac{7\pi}{2}; \frac{3\pi}{2}\right]$.

Задача 7. Дан треугольник ABC. Пусть BL — биссектриса треугольника ABC (L на отрезке AC), X — такая точка на отрезке AB, что $XL \parallel BC$. Описанная окружность треугольника AXC пересекает отрезок BC в точках C и Y. Докажите, что AX = BY.

Решение. Из того, что BL — биссектриса треугольника ABC следует, что AL:LC=AB:BC. Из того, что точки A,~X,~Y и C лежат на одной окружности, следует, что $BX\cdot BA=BY\cdot BC$, или AB:BC=BY:BX. Из того, что $XL\parallel BC$ следует, что AL:LC=AX:XB. Тогда

$$AL:LC=AB:BC=BY:BX.$$

откуда следует, что AX = BY, что и требовалось доказать.



B

Задача 8. При каких значениях параметра а уравнение

$$\log_2(2x^2 - x - 2a - 4a^2) + 3\log_{1/8}(x^2 - ax - 2a^2) = 0$$

имеет два различных корня, сумма квадратов которых принадлежит интервалу (4;8)?

Ответ: $(\frac{3}{5}; 1)$.

Решение. Перепишем исходное уравнение в виде

$$\log_2(2x^2 - x - 2a - 4a^2) = \log_4(x^2 - ax - 2a^2).$$

Заметим, что это уравнение эквивалентно системе

$$\begin{cases} 2x^2 - x - 2a - 4a^2 = x^2 - ax - 2a^2 \\ x^2 - ax - 2a^2 > 0 \end{cases}$$

или

$$\begin{cases} x^2 + (a-1)x - 2a(a+1) = 0 & (1) \\ (x+a)(x-2a) > 0 & (2) \end{cases}.$$

По теореме, обратной теореме Виета, корнями уравнения (1) являются числа $x_1 = -2a$ и $x_2 = a+1$. Поскольку у уравнения должно быть два различных корня, получаем следующие условия:

$$\begin{cases} (-2a+a)(-2a-2a) > 0\\ (a+1+a)(a+1-2a) > 0\\ -2a \neq a+1 \end{cases}$$

то есть $a \neq 0$, $a \neq -\frac{1}{3}$, $a \in (-\frac{1}{2}; 1)$.

Сумма квадратов x_1 и x_2 должна принадлежать интервалу (4;8), то есть $4 < 4a^2 + (a+1)^2 < 8$,

$$\begin{cases} 5a^2 + 2a - 3 > 0 \\ 5a^2 + 2a - 7 < 0 \end{cases},$$

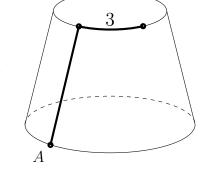
откуда $a \in (-\infty; -1) \cup (\frac{3}{5}; +\infty)$, $a \in (-\frac{7}{5}; 1)$. Пересекая все пять полученных условий, получаем ответ.

Задача 9. На детский праздник дети приносили из дома угощенья: печенье, конфеты и вафли. Классный руководитель заметила, что среди тех, кто принёс печенье ровно 1/3 принесли и конфеты, а ровно 1/4 — принесли и вафли; среди тех, кто принёс конфеты ровно 1/7 часть принесли и печенье, а ровно 1/8 — и вафли; наконец, среди тех, кто принёс вафли, ровно 1/2 принесли и печенье. А какую часть среди тех, кто принёс вафли, составляют те, кто принёс ещё и конфеты?

Ответ: 7/12.

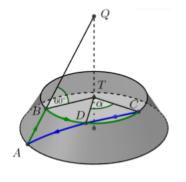
Решение. Пусть тех, кто принёс вафли x. Тогда тех, кто принёс и вафли, и печенье x/2; тогда тех, кто принёс печенье 2x, а тех, кто принёс и печенье и конфеты -2x/3; тогда тех, кто принёс конфеты 14x/3, а тех, кто принёс и конфеты, и вафли -7x/12.

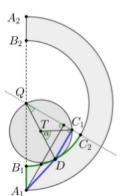
Задача 10. Назовём sopoù усечённый прямой круговой конус с длиной окружности нижнего основания 10, а верхнего основания — 9. Склон горы наклонён под углом 60° к плоскости основания. На окружности нижнего основания лежит точка A. Турист начинает подъём по склону из точки A к ближайшей точке верхнего основания, а затем продолжает свой путь по краю верхнего основания, и проходит расстояние 3 (см. рис). После этого он возвращается в точку A кратчайшим маршрутом. Чему равна длина обратного пути?



Ответ: $\frac{5\sqrt{3}}{\pi}$

Решение. Обозначим (см рисунок слева) вершину конуса буквой Q, центр меньшего основания — T, точку на верхнем основании, ближайшую к A-B, начальную точку обратного маршрута — C. Пусть D — последняя точку обратного маршрута на окружности верхнего основания (возможно, D совпадает с C или B). Угол $\angle DTC$ обозначим за α .





Рассмотрим развёртку боковой поверхности конуса (см рисунок справа), верхнее основание приложим к точке D так, чтобы оно касалось развёртки боковой поверхности. Сохраним обозначения точек, а в случае раздвоения используем индексы (так, к примеру, точки C_1 и C_2 на рисунке справа

соответствуют точке C на рисунке слева). Любая дуга окружность верхнего основания переходит в дугу окружности в два раза большего радиуса, поскольку $QB = \frac{TB}{\cos 60^{\circ}} = 2TB$. Значит, угловая мера будет уменьшаться в два раза. В частности, окружность верхней грани перейдет в полуокружность, т.е. боковая поверхность перейдёт в часть плоскости, ограниченной двумя концентрическими полуокружностями и диаметром, проходящим через их концы, QD будет диаметром верхнего основания.

Угол $\angle DQC_1 = \frac{\angle DTC_1}{2} = \frac{\alpha}{2}$. По сказанному выше, угловые меры дуг DC_1 и DC_2 относятся 2:1. Это значит, что $\angle DQC_2 = \frac{\angle DTC_1}{2} = \frac{\alpha}{2}$. Тогда $\angle DQC_1 = \angle DQC_2$, а потому точка C_1 лежит на прямой QC_2 . Учитывая, что QD — диаметр, получаем, что C_1 — основание перпендикуляра, опущенного из точки D на прямую QC_2 . Тогда длина маршрута, идущего по верхнему основанию (рисунок слева) из C в D и по боковой поверхности из D в A будет не меньше длины ломаной (рисунок справа) C_1DA_1 и не меньше длины перпендикуляра, опущенного из A_1 на прямую QC_2 .

Докажем, что существует маршрут равный длине этого перпендикуляра. Для этого достаточно показать, что проекция точки A_1 лежит на отрезке QC_2 , поскольку в этом случае перпендикуляр пересекает полуокружность $B_1C_2B_2$. Точка пересечения дает точку D для кратчайшего маршрута, а перпендикуляр изображает на развертке кратчайший маршрут. Так как путь по краю верхнего основания составляет треть длины окружности верхнего основания, то $\angle B_1QC_2=60^\circ$. Тогда отношение QC_2 к QA_1 равно отношению длин окружностей нижнего и верхнего оснований и равно $\frac{9}{10}$, что больше $\cos 60^\circ$. Значит проекция QA_1 на прямую QC_2 меньше длины отрезка QC_2 , что и требовалось.

больше $\cos 60^\circ$. Значит проекция QA_1 на прямую QC_2 меньше длины отрезка QC_2 , что и требовалось. Радиус нижнего основания $R=\frac{10}{2\pi}$. Тогда $QA=\frac{R}{\cos 60^\circ}=\frac{10}{\pi}$. Из прямоугольного треугольника (рисунок 2) длина перпендикуляра равна

$$QA_1 \cdot \sin \angle B_1 QC_2 = QA_1 \cdot \sin 60^\circ = QA \cdot \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{\pi}.$$