XXXII Турнир им. М. В. Ломоносова 27 сентября 2009 года Конкурс по математике. Решения и критерии проверки (Предварительная версия от 24.10.2009)

Общие критерии. Оценки (в порядке убывания):

«+» (задача решена полностью),

«±» (задача решена с недочетами, не влияющими на общий ход решения),

«∓» (задача не решена, но имеются содержательные продвижения),

«-» (задача не решена);

за задачу, к решению которой участник не приступал, ставится «0».

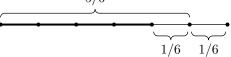
Так как по одному ответу невозможно определить, в какой степени участник решил задачу, за верный ответ без решения ставится не выше *+» (*-» если ответ типа *-да-нет»); потеря случаев в переборе или рассмотрение только (содержательного) частного случая — не выше *+».

В скобках после номера задачи указано, каким классам она предназначалась. Задачи, предназначавшиеся более младшим классам, проверяются, но не учитываются при подведении итогов.

1. (6–7) У Вани было некоторое количество печенья; он сколько-то съел, а потом к нему в гости пришла Таня и оставшееся печенье они разделили поровну. Оказалось, что Ваня съел в пять раз больше печений, чем Таня. Какую долю от всего печенья Ваня съел к моменту Таниного прихода? (В. А. Клепцыи)

Ответ. 2/3.

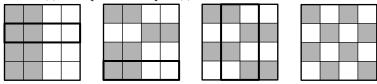
Решение. Пусть Таня съела x печений. Тогда Ваня съел 5x печений, из которых 5x-x=4x печений он съел до прихода Тани. Так как всего печений было 5x+x=6x, до Таниного прихода Ваня съел 4x/6x=2/3 всего печенья.



Критерии. Рассмотрен только частный случай (например, «пусть всего было 30 печений») — « \mp »; ответ не на тот вопрос — *ne выше* « \mp » (обычно «-»); только ответ — « \mp ».

2. (6-7) В квадрате 4×4 клетки левой половины покрашены в чёрный цвет, а остальные — в белый. За одну операцию разрешается перекрасить в противоположный цвет все клетки внутри любого прямоугольника. Как за три операции из первоначальной раскраски получить шахматную? (Т. В. Караваева)

Решение. Одно из решений приведено ниже.



Критерии. Не указано, какие прямоугольники перекрашивались, но есть правильная последовательность раскрасок — $*\pm$ ».

3. (8–9) Петя и Вася играют на бирже. Некоторые дни удачные, и в такие дни капитал Пети увеличивается на 1000\$, а капитал Васи — на 10%. А остальные дни неудачные — и тогда капитал Пети уменьшается на 2000\$, а капитал Васи уменьшается на 20%. Через некоторое время капитал Пети оказался таким же, как был в начале. А что произошло с капиталом Васи: уменьшился он, увеличился или остался прежним? (Б. Р. Френкин)

Ответ. Капитал Васи уменьшился.

Решение. За один неудачный день капитал Пети уменьшается на столько же, на сколько он увеличивается за два удачных. Поскольку в итоге капитал Пети такой же, как вначале, удачных дней было в два раза больше, чем неудачных.

В удачный день капитал Васи умножается на 1,1, а в неудачный на 0,8. От перемены мест сомножителей произведение не меняется. Поэтому результат для Васи получается такой же, как если бы за каждыми двумя удачными днями шёл один неудачный. В этом случае за первые три дня капитал Васи умножится на $1,1\cdot 1,1\cdot 0,8=0,968<1$, т.е. уменьшится. За следующие три дня он опять уменьшится, и т. д. Поэтому и в итоге капитал Васи уменьшится.

Критерии. Случай «два удачных, один неудачный» (без объяснения того, что удачных дней всегда в два раза больше, а все сводится к умножению, поэтому порядок, в котором идут дни, не важен) или соображения о том, что проценты отнимаются от большей суммы, а прибавляются к меньшей (без полного решения) — « \mp »; только ответ — «-».

4. (8–11) Даны две картофелины произвольной формы и размера. Докажите, что по поверхности каждой из них можно проложить по проволочке так, что получатся два изогнутых колечка (не обязательно плоских), одинаковых по форме и размеру. (Г. А. Галъперин)

Решение. Посмотрим на поверхности картофелин как на абстрактные геометрические фигуры. Подвинем их так, чтобы они пересеклись. Возьмем маркер и нарисуем возникшую на пересечении замкнутую кривую на каждой из картофелин. Это и есть пути, по которым можно проложить проволочки.

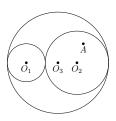
Критерии. Разобран только случай круглых картофелин / объяснение того, как найти колечки, равные только по длине / «рассмотрим очень маленькие колечки» — «—».

5. (6-8) На левую чашу весов положили два шара радиусов 3 и 5, а на правую — один шар радиуса 8. Какая из чаш перевесит? (Все шары изготовлены целиком из одного и того же материала.)

Ответ. Правая.

Решение. Заметим, что два меньших шара, если их поставить рядом, поместятся внутрь большого. Значит, их суммарный объем меньше.

Комментарий. Хотя на картинке и видно, что два маленьких шара не вылезают за границы большого, докажем это. Пусть, например, точка A лежит внутри шара с радиусом 5. Проверим, что она попадает внутрь



большого шара, т. е. что $AO_3 \leqslant 8$. Но действительно, по неравенству треугольника

$$AO_3 \leqslant AO_2 + O_2O_3 \leqslant R_1 + (R_3 - R_1) = R_3.$$

Имеется у задачи и алгебраическое решение, основанное на том, что $(R_1+R_2)^3>R_1^3+R_2^3$ (см. тж. следующую задачу).

Критерии. Доказательства того, что два шара вкладываются в третий, не требуется, достаточно (внятной) картинки; правильное решение с неверным коэффициентом в формуле объема шара — « \pm », неверная степень R в формуле объема — «-»; только ответ — «-».

6. (9–11) На левую чашу весов положили две круглых монеты, а на правую — ещё одну, так что весы оказались в равновесии. А какая из чаш перевесит, если каждую из монет заменить шаром того же радиуса? (Все шары и монеты изготовлены целиком из одного и того же материала, все монеты имеют одинаковую толщину.) (Γ . А. Гальперин)

Ответ. Правая.

Решение. Так как при растяжении в R раз площади меняются в R^2 , а объемы в R^3 раз, площадь круга радиуса R равна V_2R^2 , а площадь

шара V_3R^3 , где V_2 и V_3 — некоторые константы (площадь единичного круга и объем единичного шара, соответственно; на самом деле $V_2=\pi$, а $V_3=\frac{4}{3}\pi$, но для решения задачи это не важно).

Обозначим радиусы монет через R_1 , R_2 и R_3 . Вначале весы были в равновесии, поэтому $V_2R_1^2 + V_2R_2^2 = V_2R_3^2$, т. е.

$$R_1^2 + R_2^2 = R_3^2.$$

Аналогично, чтобы определить, что произошло с весами, после того как монеты заменили шарами, нужно сравнить $R_1^3 + R_2^3$ с R_3^3 . Но по сравнению с равенством выше правая часть умножилась на больший радиус R_3 , а два слагаемых в левой части — на меньшие радиусы R_1 и R_2 :

$$R_1^3 + R_2^3 = R_1^2 \cdot R_1 + R_2^2 \cdot R_2 < R_1^2 \cdot R_3 + R_2^2 \cdot R_3 = (R_1^2 + R_2^2) \cdot R_3 = R_3^3$$

Значит, правая чаша перевесит.

Критерии. Правильное решение с неверным коэффициентом в формуле объема шара — « \pm », неверная степень R в формуле объема — не выше « \mp »; рассмотрен только случай одинаковых радиусов — « \mp »; только ответ — «-».

7. (6–11) В ряд слева направо лежит 31 кошелёк, в каждом по 100 монет. Из одного кошелька часть монет переложили: по 1 монете в каждый из кошельков справа от него. За один вопрос можно узнать суммарное число монет в любом наборе кошельков. За какое наименьшее число вопросов можно гарантированно вычислить «облегчённый» кошелёк? (А. В. Шаповалов)

Ответ. За олин.

Решение. Достаточно получить ответ на вопрос «сколько всего монет в кошельках с нечетными номерами?»

Действительно, если ответ на него «1600+n» (n>0), то монеты перекладывали из кошелька с четным номером, справа от которого было ровно n кошельков с нечетными номерами — т. е. из (2n+1)-го справа кошелька. Если же ответ на него «1600-n» (n>0), то монеты перекладывали из кошелька с нечетным номером, справа от которого было ровно n кошельков с четными номерами — т. е. из 2n-го справа кошелька.

Комментарий. Жюри имело в виду, что вопросы можно задавать только про конкретно указанные кошельки (например, «сколько монет в первом, втором и седьмом кошельках»). Но некоторые участники решили, что допустимы и вопросы вроде «сколько монет в кошельках правее облегченного?».

Бинарный (или тернар
нный) поиск кошелька — «—»; только ответ — «—».

8. (10–11) Вася отвечает теорему Виета: «Сумма трёх коэффициентов квадратного трёхчлена равна одному из его корней, а произведение — другому». Экзаменатор: «Неверно». Вася: «Как же неверно? Я проверил для случайно выбранного трёхчлена, и всё получилось». Какой это мог быть трёхчлен, если его коэффициенты — целые числа? (Б. Р. Френкин)

Ответ. $-2x^2 + 4x$.

Решение. Пусть m — корень, равный сумме коэфициентов, n — корень, равный их произведению, a — старший коэффициент. Если коэффициенты целые, то их сумма и произведение m, n тоже целые.

Согласно настоящей теореме Виета, уравнение имеет вид

$$ax^2 - a(m+n)x + amn = 0.$$

Поэтому фактически Вася утверждает, что

$$m = a - a(m+n) + amn,$$

$$n = -a^{3}(m+n)mn.$$

Перепишем первое равенство в виде

$$m = a(1-m)(1-n).$$

Видим, что m делится на 1-m. Прибавив 1-m к m, получаем, что 1 также делится на 1-m, откуда m равно 0 или 2. Если m=0, то ввиду второго равенства n=0, а тогда из первого равенства a=m=0, что невозможно для старшего коэффициента трёхчлена.

Остаётся случай m=2. Если сократить во втором равенстве на n, то получим, что 1 делится на 2. Значит, сокращать на n нельзя, т.е. n=0. Тогда из первого равенства находим a, а затем по теореме Виета находим остальные коэффициенты. Полученный трёхчлен $-2x^2+4x$ удовлетворяет условию задачи.

Критерии. Ответ без верного обоснования — « \mp »; потеря одного из случаев в переборе — « \mp ».