
G Groups and mosaics

Corrections

� B9. A group is presented by defining relations U1 = 1, . . . , Uk = 1. Assume W ≡ 1 (i.e.,
the word W may be reducedto the empty word). Then words X1, . . . , Xn may be chosen in
such a way that the word
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(here 1 � ij � k), may be reduced to W by using cancellations of elements adjacent to their
inverses only.

Additional Problems
Problems of the cycle D prepare the problems of the main cycle E.

� D1. We are given an infinite periodic sequence of minimal period n. Assume this sequence
has two identical subwords of length n − 1.

1. Show that the distance between initial letters of these subwords is a multiple of n.

2. Does a similar statement hold for subwords of length n − 2?

� D2. We consider finite words over a finite alphabet. There is a finite dictionary of forbidden
words. Assume that there exists an infinite sequence which does not contain forbidden subwords.
Prove that there exists an infinite periodic sequence which does not contain forbidden subwords.

� D3. A finite word is called cube-free if it never contains three consecutive entries of the
same subword. Show that there exist arbitrarily long cube-free words over the alphabet of two
letters.

Hint: Consider the words a, ab, abba, abbabaab, . . . Here the next word is obtained
from the previous one by using the substitution a → ab, b → ba.

� D4. We are given two distinct periodic sequences, whose smallest periods are n and m
respectively. Assume that these sequences have a common subword of length m+n−1. Show
that they have arbitrarily long common subwords.

� D5. Give a precise estimate in D4. Consider separately the cases when m and n are coprime
and not coprime.

� D6. A triangle is partitioned into convex quadrilaterals. Show that one of the quadrilaterals
must have an angle of at least 120◦.

� D7. Does there exist a convex polyhedron whose every face has at least 6 edges?

� D8. A convex polyhedron has at least 7n faces. Show that at least n faces have the same
number of edges.

� D9. The plane is partitioned into convex k-gons. The diameter of each k-gon is at most 1.
For a given point O, let Sk(R) be the number of k-gons contained in the circle of radius R
centred at O. Show that there exists R0 such that for all R > R0 we have Sk(R) � λR.
Show that we may take λ = k/10. Try to obtain a better estimate for λ.
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� D10. The half-plane is partitioned into convex k-gons. The diameter of each k-gon is at
most 1.

We mark L adjacent k-gons at the boundary of the half-plane. We define the first layer to
be the set of k-gons adjacent to the marked ones. The set of k-gons adjacent to those of the
first layer is defined to be the second layer. Show that the number of k-gons in the second layer
is at least L(k/10)2.
� The Burnside Problem. We are given a positive integer n. Does there exist a finitely
generated infinite group such that its every element x satisfies the relation xn = 1 (“finitely
generated” here means that the group is defined over a finite alphabet).

А.Yu.Olshansky has constructed such a group for odd n > 1010. We shall follow the main
ideas of his construction.

The solution to the Burnside problem is carried out in two steps. The first step is an
inductive construction of defining relations. At each step we add several new relations of the
form An = 1. We must verify that every word eventually becomes periodic (i.e., for any
word X the relation Xn = 1 is deducible from defining relations introduced at some stage).
Two words are declared equal if one may be reduced to the other using finitely many defining
relations introduced.

We thus obtain a group whose every element is periodic.
The second part of the argument is the proof that the group we have obtained is infinite.

To this end we must show that after every step there exists a word not equal to 1. For this we
must show that there does not exist a chart all whose cells are periodic words with a sufficiently
large period and along the perimetre we have a word without periodic subwords with a larger
period (e.g., square-free or cube-free). To establish this fact one investigates different cases of
the adjacency of cells. Cells correspond to defining relations introduced at various stages of the
inductive process; at each consecutive stage the word is longer. Cells may thus be of different
sizes.

First we show that “large” cells cannot have “large adjacency”. Then we consider the case
when a large cell is adjacent to several layers of small cells. Here we use exponential growth of
the number of polygons in problems D9 and A4.

Pic. 7
Thus according to problem D9, by carefully choosing k one may achieve the effect that already
the second layer already has hugely many cells. The choice of k (i.e., the number of sides of our
polygons) is controlled by the choice of n (the degree of periodicity of the group). I.e., at the
first stage the length of defining relations is n, at the i-th stage it is ni. Polygons will thus have
sufficiently many angles, and the exponential growth will force a huge number of cells already
in the second layer.

Pic. 8
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It remains to consider the case when there is a layer of small cells between two large cells.

We shall need the following definition.
Cells A and B are called reducible if the following holds:

1. A and B either have common boundary or are joined by a chain of 0-cells ;

2. A and B have the same labels.

If our diagram has two reducbile cells, we may carry out the following operation. We cut
out from our diagram the disk formed by the un ion of two cells and insert several 0-cells. This
operation reduces the number of nontrivial cells. The diagram which does not contain reducible
cells is said to be reduced.

� E1. Example of a narrow strip for the even exponent. Show that there exists a
reduced diagram D all whose cells have the form Xk = 1, and, which, additionally, has the
following structure:

1. D contains two cells A and B such that all cells are adjacent to them;

2. The perimetres of cells A and B may be arbitrarily larger than perimetres of all other
cells (i.e., the ratio of these perimetres may be arbitrarily large.

� E2. Assume that a reduced diagram has cells of two types: «large» cells of m letters and
«small» cells of n letters. Each cell is labelled by a periodic word of the form An. What largest
common segment may the two large cells have?

� E3. Assume that perimetres of all cells of a reduced diagram are equal either to m or to
n, where n >> m and labels of all cells are periodic. Consider the cell A with perimetre n.
Assume that all adjacent cells have perimetre m. As before, the first layer is the set of cells
adjacent to A . The k-th layer (k > 1) is the set of cells adjacent to the k − 1-th layer. Let
Ak be the number of cells at the k-th layer. Prove that Ak � (m/100)k.

� E4. Assume that perimetres of all cells of a reduced diagram are equal either to m or to
n, where n >> m and labels of all cells are periodic with an odd period. Assume the layer
of small cells is squeezed between two large cells (see Pic. 8). Is it true that the label of this
contour is periodic?
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