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Around the Feet of Bisectors

Main problems

Solutions

Using solutions by Bazhov I. and Chekalkin S.

13.  The external bisector 

  (fig. 13) is parallel to 

, hence 

. In the triangle 

 the line 

 is the bisector and the altitude, it means that 

 is the median. Because 

 

 (i.e. 

) is the perpendicular bisector of 

.  Therefore 

. Hence 

, i.e. 

.

14.  Because 

 lies on the perpendicular bisector of 

(fig. 13),  

. It means that  

 is tangent to 

.

15.  Because 

 lies on the perpendicular bisector of 

(fig. 13), 

.

16.  

 (fig. 16). Because 

, 

 is tangent and 

. Then 

.

17.  Let us consider the homothety 

 and 

 with the center 

 (fig. 17). It is not difficult to show that 

 intersects 

in the point opposite to the touching point of  

 and 

. This means that the common point of lines 

 и 

 is such point 

 that 

.

Now as 

 the quadrilateral 

 is cyclic (fig. 17). By problem 16 the points 

, 

 and 

 are collinear. So 

.

18.  As the quadruple of rays 

, 

, 

, 

 is harmonic (fig. 18) the quadruple 

, 

, 

, 

 also is harmonic. But by problem 13 

 so 

 is the midpoint of 

.

19.  Consider the homothety with center 

  transforming 

 to 

 (fig. 19). As 

, this homothety transforms 

, 

. It follows that 

. Similarly 

. So 

 are collinear on the line parallel to 

.

20.  Consider the homothety with center 

 transforming 

 to 

. As 

 this homothety transforms 

, 

. It follows that 

. Similarly 

. So 

 are collinear on the line parallel to 

.

21. Consider the perpendiculars to 

 passing through 

, 

 and the midpoint of the segment 

 (fig. 21). As 

 and 

 touches the circle 

, the degrees of 

 with respect to 

 and the point 

 are equal. As 

, 

, the radical  axis of 

 and  

 coinciding with 

 passes through 

. The triangle 

 is recanguler so 

. As three considered lines are parallel and the lines 

 and 

 are also parallel,  

. So the segment 

 is divided by 

 and 

 to three equal parts.

22. By problem 7 

 is the radical axis of the circles 

 and 

. So the degrees of bisector’s feet 

 and 

 with respect to these circles are equal. This means that the points 

 and 

lying in this radical axis are the common points of 

 and 

.

23. The circle 

 is the nine-point circle of the triangle 

 and the circle 

 is its circumcircle. So the ratio of their radius is equal to  2.

24. As 

 is the orthocenter of the triangle 

 the circles 

 and 

 are homothetic with center 

.

25. The radical axis of circles 

 и 

 coincide with the line 

 and passes through the point 

. As 

 the segment 

 is the tangent to the circle 

.

26. The homothety with center 

 and coefficient 

 transforms the point 

 to the point 

 lying on 

 (fig 26). As 

 touches 

 

. It means that 

, so the tangent to 

 in 

 is parallel to 

. The homothety with center 

 and coefficient 2 transforms this tangent to the line 

. But this homothety transforms 

 in 

. So 

 touches 

.

27. As 

 touches 

 and 

 is the diameter of 

, 

. It follows that the points 

, 

 and 

 are collinear (fig. 27). Now 

. It means that the points 

, 

, 

 and 

 are on the circle.

28. The chord 

 is twice greater than the segment 

 (fig 28). But 

 

   So 

.

   Remark: Using this formula it is easy to prove that 

 follows 

 i.e. 

 is the diameter of 

 (problem 11). Also the inequality for the exradius can be obtained 

29. As 

 is the external angle of the triangle 

 (fig. 29) 

.     from the right-angled triangle

 we obtain that 

. On the other hand, 

, so 

. Thus 

, that is, 

 touches the circle 

.

30. As 

 is the Apollonius circle of the segment 

 (fig. 30) we have 

. Thus 
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 and the quadrilateral 

 is harmonic. It follows that the tangents to  

 at its vertices 

 and 

 intersect in the point 

 lying in the line 

. It means that 

 is the symmedian of the triangle 

.

31. It is well known that the Aubert line of the complete quadrilateral is the radical axis of three circles having its diagonals as diameters. If the triangle is formed by the bisectors axis than the segments  

, 

 и 

 are its diagonals. By problem 30 the degrees of the point 

 with respect to three circles having this segments as diameters are equal to 

. So 

 lies in the radical axis of these circles.

32. The degree of Lemoine point 

 with respect to the circle having  

 as diameter is equal to 

 (fig.30). The degree of this point with respect to 

 is the same. So the degrees of 

 with respect to three circles having the diagonals of the quadrilateral as diameters are equal and 

 lies on the Aubert line.

33. By problem 26 

 is the common point of two common internal tangents of the circles 

 and 

. So 

 is the homothety  center of these circles. This homothety transforms the line 

 touching 

to the parallel line 

 touching 

. So the touching point of 

with the sideline 

 and the incenter 

 are the respective points of this homothety. It means that the point 

 lies in the segment between these points

34. The authors don't know the synthetic solution of this problem. The participants also didn't find it. There is a plan of calculation in barycentric coordinates.

Using the coordinates of the Gergonne point 

 and the centroid 

 we can find the coordinates of the point 

 dividing the segment 

 in the ratio equal to 

. Also we can find the ratio in which the line 

 divide the sideline 

. Now as 

 divide the segment 

 (

 is the touching point of 

with 

) in the ratio equal to 

 (problem 33), we can find the coordinates of

 and verify that the lines 

 and  

 divide 

 in the equal ratio. 

35. The foot of internal bisector is the internal homothety center of the incircle and the respective excircle. The foot of the external bisector is the external homothety center of two excircles. The point 

is the external homothety center of the incircle and the nine-point circle and the points 

, 

 и 

 are the internal homothety centers of the nine-point circle and respective excircles. The asertion of the problem follows from three homothety centers theorem.

36. The solution is in the book: I. F. Sharygin. «Geometry 9-11», problem № 586 (in Russian).

37. By three homothety centers theorem the points F2, B1 and F are collinear. Similarly the points F3, C1, F are collinear and the points F1, A1, F are collinear. Thus the triangles F1F2F3 and A1B1C1 are perspective with center 

. Also by problem 36 these triangles are similar. So the sum of the angle C1B1A1 = F1F2F3 and the angle C1FA1 is equal to 180(. It means that the points  A1, B1,C1, F are concyclic.
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