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Rubic’s cube and Higman problem

In this project we shall explore Rubic’s cube and similar puzzles. Before this

we should solve some preliminary problems.

Preliminary problems.

� P1. There are 12 labeled cubes in a row. The left cube is labeled with 1 and

the right one with 12. If the crazy drummer beats his magic drumhead then two
neighboring cubes transpose. After 333 beats every cube goes crazy if there are

odd number of cubes with less number to the right of him. Can the number of
the crazy cubes be equal to 6?

� P2. There are 42 cubes in the row labeled in the increased order. One can

transpose every two neighboring cubes. Is it possible to transpose the first two
cubes and leave the remaining cubes at their places by 2008 moves?

� P3. There are 20 color cubes in the circle. One can choose every three cubes

and put the first one on the second one’s place, second one to the third one’s place
and the third one to the first one’s place. Is it possible to obtain the situation that

all the cubes would be cyclically shifted in comparison with the initial position?

� P4. The facets of a cube are painted into different colors. Some of these cubes
are used to form a rectangle m×n. One can choose a row or a column and rotate

all the cubes with regard to the common axis. Prove that it is possible to obtain
the situation that all the cubes be rotated to the up with the same color.

A. Rubic’s cube.

Let us call the whole large cube by cube and small cubes by bricks. Every

9-bricks facet of the cube can be rotated clockwise or counter-clockwise. One
can do several such rotates in series. This sequence of rotates is simply called

combination.

Denote the facets of the cube by A, B, C. We shall say that clockwise rotation of
the facet is denoted by the same letter, for example, A. We also denote the counter-

clockwise rotation by A−1. Further, we shall denote the sequence of rotations by
the sequence of the letters. For example, ABA−1C means “clockwise rotation of

the A facet then clockwise rotation of the B facet then counter-clockwise rotation

of the A facet then clockwise rotation of the C facet”.
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The sequence XY X−1Y −1 is called the commutator of the rotations X and Y .

There are three types of bricks inside the cube: central bricks are located in
the centers of facets, corner bricks form the corners of the cube and middle ones

are located in the centers of the cube’s edges. In is clear that the central bricks
doesn’t move (with regard to each other). Also corner bricks will stay corner and

middle ones will stay middle.

Suppose that middle and corner bricks don’t fasten with anything. Hence we

can easily take they out, transpose and put they in. Let us transpose middle
bricks with other middle ones. Similarly we do with the corner ones. (We shall

not transpose the central bricks.) Moreover, we check that the external facets
of the bricks stay external after any transformation. Any position after such

transformations is called a state. A state of the cube is called right if every facet
of this cube is one-color. We shall say that a brick has the right position if it has
the same colors of the facets as for right state of the whole cube. States are called

connected if there exists a sequence of rotations such that the first state converts
to the second one. A state is said to be admissible if it is connected with the

right state.

� A1. Suppose that we apply a sequence of rotations to the initial cube. Prove
that it is possible to apply this combination several times again and return to the

initial state.

� A2. Is there exists a sequence of rotations that would arrange the cube starting
from any state (by applying it several times)?

� A3. Find a combination of rotations that would cause to cyclically shift the

bricks 1, 2, 3 and leave the remaining middle-bricks at their places (fig. 1).
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� A4. Show that the combination A−1C−1B−1A−1BAC cause to transpose the

1 and 2 bricks and leave the remaining middle-bricks at their places (fig. 2).
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Figure 2. Figure 3.

� A5. Find a combination that would cause to rotate the bricks 1 and 2 within
their sockets and leave the remaining middle-bricks at their places and states

(fig. 3)?

� A6. Prove that there is no combination that would cause to rotate the brick 1
within its socket and leave the remaining middle-bricks at their places and states
(fig. 3).

� A7. Suppose that the state of the cube is admissible. Show how to place all

the middle bricks to the right states. Suppose that the state is not necessarily
admissible. Consider the states of the middle bricks and describe all possible

connected states.

� A8. Find a non-trivial combination of rotations that would cause no effect to

the cube while applying it exactly three times.

� A9. Find a combination of rotations that would cause to cyclically shift the
bricks 1, 2, 3 (fig. 4), and leave the remaining corner-bricks at their places and

middle-bricks at their places and states.

� A10. Consider an admissible state of the cube. Find a combination that would

arrange all the corner bricks to their places and leave the middle-bricks at their
places and states. Suppose that the state is not necessarily admissible. Consider

the states of the corner bricks and describe all possible connected states.
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Figure 4. Figure 5.

� A11. Prove that there is no combination that would rotate exactly one corner

brick and leave the remaining bricks at their places and states.

� A12. Find a combination that would cause to rotate clockwise the bricks 1,
2, 3 (fig. 5) by 120 degrees , and leave the remaining bricks at their places and

states.

� A13. Suppose that the state of the cube is admissible. How to arrange the
cube?

� A14. Suppose that the all corner bricks are in the right places and middle ones
are in the right states. Consider the states of the corner bricks. How to define if

it possible to arrange the cube?

� A15. How many pairwise unconnected states of the cube would be?

� A16. Calculate the number of admissible states of the cube.

Section B.

In this section we shall consider some similar puzzles. Let us apply two combinations
(of rotations) at the same state. We shall say that these two combinations are

different if they make different results.

� B1. The chessboard is labeled with all integer numbers from 1 to 64. One can
choose a square 2× 2 and rotate clockwise the numbers inside it. Prove that it is

possible to achieve any possible numbers arrangement.

� B2. Consider the 2×2×2 cube. Describe all the admissible states of this cube.
How many such states are there?
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Figure 6.

� B3. Consider the game “Hungarian rings” (fig. 6). There is a planar puzzle

consisting of two or more interwoven ovals each of which has several labeled pieces,
some of which may belong to more than one oval. A puzzle move consists of

shifting an oval by one or more “increments”, and hence all the pieces on it, along
the oval’s grooved track. The pieces are equally spaced apart (in spite of the typed

depiction below) and whose pieces which lie on more than one oval can be moved
along either oval. For simplicity, consider the puzzle consisting of only two ovals,
each having 6 pieces.

The pieces 1 and 3 can be moved along either oval. Note that each move
corresponds to an unique permutation of the numbers in {1, 2, . . . , 10}.

Describe all the admissible states.

� B4. Consider the game ‘Equator’ (fig. 7). This puzzle is in the shape of the
sphere but has 3 circular bands encircling a sphere, each having 12 square-shaped
pieces and each band intersecting each other at a 90 degree angle. Each pair of

circles intersects at two points, or “nodes” and at each such node there is a puzzle
piece shared by the two circular bands. There are 6 nodes total. One can rotate

any band such that their pieces would transfer to each other. The total number
of movable pieces is therefore 3 × 12 − 6 = 30.

Describe all the admissible states.

� B5. Consider the 4×4×4 cube. Describe all the admissible states.

� B6. Consider the game “15”. There are 15 numerated tiles placed in the 4×4

square. One square is empty. One can choose a neighboring (by side) tile of the
empty square and move it on the empty place.

Describe all the admissible states of the game.

� B7. How many pairwise unconnected states of the cube 4×4×4 would be?

� B8. Find the invariants system for 4×4×4 cube.
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Figure 7.

� B9. Find the invariants system for n×n×n cube.
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Section C.

� С1. Consider a regular tetrahedra. We can rotate it such that it maps to itself

and some edges and vertexes may transpose. Find the number of the different
rotations.

� С2. Similar task for cube. Describe behavior of the main diagonals of cube.

Consider a regular polyhedra. Similarly to Rubic’s cube rotations we can apply

a sequence of two motions. It is easy to see that this composition is a motion itself.
This composition is called a product.

The motion of polyhedra is called an identity if it preserves all its vertexes.
Composition of every motion F with identical motion I does not change F , i.e.

F = IF = FI. Identical motion of a polyhedra is an identity of all space.

� С3. Let M be an n-element set. Consider the permutations of M elements.

For example, if M consists of 3 elements, then there are 6 such permutations:
1) exchange 1 and 2, 3 does not move;

2) exchange 2 and 3, 1 does not move;
3) exchange 1 и 3, 2 does not move;

4) sent 1 into 2, 2 into 3, 3 into 1 (cycle of length 3);
5) 1 → 3, 3 → 2, 2 → 1 (cycle of length 3);
6) don’t move anything.

Similarly for each n all permutations can be listed. Suppose that we apply
some permutation then apply another one. This combination of two permutations

is called a product of them. Which permutation is identical? Prove that for any
motion A there exists a motion A−1 such that AA−1 = A−1A = E, there E is

the identical motion. Check the associative law: (AB)C = A(BC).

� С4. Let A be a set of all motions of a cube. Find a correspondence between A

and the set B of permutations of 4 elements such that product in A corresponds
to the product in B.

Definition. A group is a set G with operation of multiplication such that the
following properties are satisfied:

1) (AB)C = A(BC) (associative law) ;

2) there is an unit element E such that AE = EA = A for any A;

3) for any element A there exists an inverse A−1 such that AA−1 = A−1A = E.

Permutation group from problem C3 is denoted by Sn.
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� С5. Prove that the following sets with operations are groups:

1) the set of integers with respect to addition;
2) the set of all positive rational numbers with respect to multiplication;

3) Rubic’s cube transformation with respect to composition.

� С6. Which of the following objects are groups?
1) the rational numbers with respect to multiplication;

2) set of all words in the Latin alphabet (including empty word) with respect
to concatenation (concatenation of u and v is uv).

3) set of all words in the alphabet {a, b, c} (including empty word), if for any
words X, Y we can replace any of the words XabcY , XbcaY , XcabY with the

word XY (in other words, we can remove abc, bca, cab from any word) and do
inverse operation (add these words);

4) Three double transpositions (12)(34), (13)(24), (14)(23) and identity?

Note: (123)(4567) means that the elements are cyclically shifted in every
bracket: 1 → 2 → 3 → 1 and 4 → 5 → 6 → 7 → 4.

Definition. Let G be a group, H be a subset of G. Suppose that H contains

unit element of G, (we just call it unit) and also all products of any two elements
in H together with their inverses, then H is called a subgroup.

� C7. Let H be a subgroup of G. Prove that H is a group.

� C8. Find all subgroups of S3.

� C9. Lagrange theorem. Prove that the number of subgroup elements divides
the number of group elements.

� C10. Find a n!

2
-elements subgroup of Sn, for n ≥ 2.

We shall denote the group in the previous problem by An.

� C11. Prove that any element of An is a product of cycles of length 3 (they

may intersect with each other).

Definition. aba−1b−1 is called a commutator of a and b.

Definition. Commutant of G is the set of all products of commutators.

� С12. Find the commutants of S3, A3, A4, Sn, An.

Let us fix a ∈ G. For any g ∈ G consider corresponding element a−1ga. This
element is called a conjugate g respect to a, or just conjugate.
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� С13. Let H be a subgroup of G. Suppose that a−1Ha is the set of all conjugates

of the H elements with respect to a. Prove that a−1Ha is a subgroup as well.
Subgroups H and a−1Ha are called conjugated.

Definition. A subgroup is called normal if it is equal to all its conjugates.

� С14. Prove that commutant, unit element E and whole group G are normal
subgroups of G.

The whole group G and unit element E are the trivial normal subgroups of G.
All other subgroups are called non-trivial. If G has the trivial normal subgroups

only, then G is simple group.

� C15. Find all n such that group Sn is simple.

� C16. Prove that group An is simple for n ≥ 5.

� С17. Find all n such that Sn or An are equal to the groups of motions of cube

or tetrahedra.

� С18. Prove that the group of icosahedra motions are equal to A5.

� C19. Find a 8-element group such that there exist two elements a, b and

ab 6= ba.
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Section D. Groups

Definition. Groups G and H are called isomorphic if there exists a one-to-
one mapping (isomorphism) ϕ such that unit element maps to unit element and

composition of any two elements in G maps to composition of the corresponding
two elements in H: ϕ(g1g2) = ϕ(g1) × ϕ(g2).

� D1. Prove that the following groups are isomorphic:

1) group of cube’s motions and S4;
2) group of real numbers with respect to addition and group of horizontal

motions;

3) group of integer numbers with respect to addition and group of 2k for integer
k with respect to composition.

4) group of dodecahedra’s (icosahedra’s) motions and A5;
Isomorphic groups are really equivalent groups.

Suppose that G is a group, and M is a set. We shall say that G acts on M ,

if for any m ∈ M and g ∈ G there exists an corresponding element m′ = g(m)
such that (g1g2)m = g1(g2m).

Examples.

1. The group of all motions acts on 3-dimensional space.

2. The groups Sn и An act on the set {1, . . . , n}.

3. A group acts on itself by left multiplications: every h ∈ G defines a mapping

ϕh(g) = hg.

4. A group acts on itself by conjugates: every h ∈ G defines a mapping ϕh(g) =

h−1gh.

� D2. Prove that these are really the acts.

� D3. Suppose that n is the number of elements in the group G (we shall denote
it by n = |G|). Prove that there exists a subgroup in Sn such that it is isomorphic
to G.

� D4. A group G is colored into several colors such that the color of the product

depends on colors of the factors only. The unity is red. Prove that the set of red
elements is a normal subgroup.

Suppose that H is a subgroup in G. The coloring of G is called left if:
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1) for any g ∈ G and h ∈ H the elements g and hg are colored in the same

color;

2) if g1 and g2 are colored in the same color then g1 = hg2 for some h ∈ H.

� D5.

a) Prove that the left coloring coincides to the right one if and only if H is a
normal group.

b) Prove that if H is a normal group then the color of the product depends on
colors of the factors only and the color of the inverse element depends on color of

the original one.

Suppose that H is a subgroup in G. For any g ∈ G consider the set of all ghi
for hi ∈ H. This set is called left H-class with respect to H and denoted by gH

(note that this is essentially just the same as one-colored elements). Every element

G belongs to one left H-class only. Two elements belong to the same class if they
can be presented in the form ghi for some hi ∈ H. Every g1 = g1e belongs to

g1H (because of e ∈ H). The element g2 belongs to the same class if there exists
h such that g2h = g1 (or g1g

−1

2
= h).

The product of two classes g1H and g2H is the class g1g2H. We can choose
other representatives of these two classes, namely, g′1 ∈ g1H and g′2 ∈ g2H. Then

the product would be g′1g
′
2H.

� D6. Prove that a product is well-defined (because of g1g2H = g′1g
′
2H).

Similarly we can define an inverse element on the left H-classes set: the class

g−1H is inverse for gH.

The set of left H-classes (or the set of colors from D5) can be considered as
a group. This group is called a factorgroup with respect to the normal subgroup

H.The left H-classes are the elements of this group.

� D7. Find factorgroups of G with respect to the H:

1) G = Sn and H = An;
2) G = A4 and H is a group of three double transpositions (12)(34), (13)(24),

(14)(23) and identity?
3) G is a group of real numbers with respect to addition and H is the subgroup

of integers.

� D8.

a) Prove that the group of rotations combinations of the cube 2×2×2 is the
factorgroup of the 3×3×3-cube group.



1313
13

b) Prove that the groups of rotations combinations of the cubes 3×3×3 and

4×4×4 is the factorgroups of the 5×5×5-cube group.

Definition. An orbit of an element m ∈ M is the set {gim} for some gi ∈ G.

� D9. Describe the orbits of elements for the following acts:

1) the group of rotations combinations acts on the corner brick;
2) the horizontal translation group acts on the point of the plane;

3) group Sn of permutations acts by conjugates on itself. The element is 3-cycle.

� D10. Prove that any two orbits are disjoint or coincide.

Definition. Стабилизатором элемента m ∈ M называется множество элемен-
тов g ∈ G таких, что g(m) = m.

Suppose that G acts on set M . Some elements of the group don’t shift the
elements of the set:

Definition. A set of elements g ∈ G is called a stabilizer of en element m ∈ M

if g(m) = m.

� D11. Prove that stabilizer Stabm is a subgroup. Prove that |Om|·| Stab m| =
|G|.

Definition. Действие называется хорошим, если стабилизатор любого эле-
мента состоит из одной единицы.

Definition. An act is called good if stabilizer of any element is unity only.

Consider two actions of G on the sets M1 и M2. Suppose that these sets one-to-

one correspond to each other: every element M1 corresponds to the unique element
M2 and vice-versa: Ψ(M1) = M2. Then these two actions are called conjugated if
the group acts on these sets by the similar way: element gϕ(M1) corresponds to

gψ(M2).

Note that we can choose M1 = M2 = M .

� D12.

a) Suppose that ϕ1 and ϕ2 are two good actions on M . Is it always true that

they are conjugated?
b) The same question if the numbers of orbits are equal.

Suppose that G is a group and g ∈ G. Consider an element g−1hg for each g.
It is easy to see that the element g−1h1gg−1h2g = g−1h1h2g correspond to the

product h1h2. Hence, h → g−1hg is one-to-one mapping such that a product maps
to a product. Thus, we have obtain an isomorphism of G to itself.
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� D13. Suppose that G is a group, H1 and H2 are isomorphic subgroups with

isomorphism ϕ : H1 → H2. Is it always possible to continue ϕ to the isomorphism
of G to itself.
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� D14. Suppose that G is a group and H1 and H2 are isomorphic subgroups of

G. Let the numbers of elements in the H1-classes and H2 be equal (or both are
countable). Prove that there exists a group G

′

such that G is a subgroup of G
′

,

t ∈ G′ and the following condition holds for any h ∈ H1:

tht−1 = ϕ(h) ∈ H2.

� D15. Suppose that the numbers of elements in the H1-classes and H2 not be
equal. Prove the same fact.

Definition. If every element of group G can be presented by the product of some
elements of {xi} then G is called generated by elements xi. We denote this by

G = 〈xi〉.

Definition. A group is called n-generated if there are n elements in {xi}.

Definition. A group is called n-free-generated, if it is isomorphic to the group of
words in the alphabet {g1, g

−1

1
, g2, g

−1

2
, . . . , gn, g

−1
n }.

� D16. Suppose that G contains the following pairs of isomorphic subgroups:
ϕi : Hi → H

′

i for i = 1 . . . n. Prove that there exists a group G
′

, such that G is a

subgroup of G
′

and the following condition hold in G′:
1) tihit

−1

i = ϕi(hi);
2) the group generated by 〈ti〉 is free.

� D17. Suppose that group G is free-generated by the elements ti i ∈ N. Prove
that there is a isomorphism between G and H = 〈t2, t3, . . . 〉.

� D18. Prove that any countable group can be presented by the subgroup of a
3-generated group.

Section E. Groups and arrangement of a high-dimensional cubes

We shall say that a cube is almost solved if all the bricks returned to their places
but maybe some of them aren’t rotated well. We use some following problems to

almost solve a cube.

� E1. a) Suppose that two 4-cycle contain one common vertex. Prove that they
generate a group S7.

b) Suppose that two 4-cycle contain two common consecutive vertexes. Prove
that they generate a group S6.
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� E2. a) Prove that the group A12 is generated by 11-cycles.

b) Let x ∈ S8. Prove that x8! is the unity. Suppose that s is a 11-cycle. Prove
that there exists a 11-cycle t such that s = t8!.

c) Suppose that middle bricks and corner brick in the 3×3×3 cube are transposed
with permutations of equal parity. Prove that it is possible to almost solve the

cube.
d) Prove that it is possible to almost solve the cube 4×4×4 starting from any

state.

Definition. We shall say that a group G is a sum of groups G1 and G2 if it is

consists of pairs (g1, g2) such that g1 ∈ G1, g2 ∈ G2. Besides, the following rule
describes the multiplication in G: (g1, g2) × (h1, h2) = (g1h1, g2h2). We denote a

sum by G = G1 ⊕ G2.

� E3. Suppose that G1 is simple finite group with generators a1, . . . , ak and G2

is simple finite group with generators b1, . . . , bk. Let G = G1 ⊕ G2. Suppose that
H is a G-subgroup generated by the elements zi = (ai, bi), i = 1, . . . , k. Prove

that H = G or there is an isomorphism ϕ : G1 → G2 such that bi = ϕ(ai). Prove
that the group of rotations combinations of the 3×3×3 cube contains a subgroup
A8 ⊕ A12.

� E4. Prove that any state in the cube 2n×2n×2n can be almost solved.

� E5. Prove that 2×2× . . .×2 cube can be almost solved for any dimension.

� E6. Prove that 2n×2n× . . .×2n cube can be almost solved for any dimension.

Using the fact that a 2×2×2×2 cube can be almost solved we can do the useful

note. Suppose that we can rotate k corner bricks. Then we can similarly rotate

any other k corner bricks. This note helps us to describe a full cube solvability.

� E7. Prove that 2×2×2×2 cube has 3 classes of connected states in 4-dimensional
space. Note: Use the fact that factorgroup of A4 with respect to the group of

double transpositions (example 2 in D7) is a 3-element group.

� E8. Prove that all states of the 2×2× . . .×2 cube are admissible in the di-

mension 5 or higher.

� E9. Find the number of classes of connected states for 3×3× . . .×3 cube in

the dimension 4 or higher.

� E10. Find the number of classes of connected states for n×n× . . .×n cube in
the dimension 4 or higher.


