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Abstract

This paper is on tilings of polygons by rectangles. A celebrated physical interpretation of
such tilings due to R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte uses direct-
current circuits. The new approach of the paper is an application of alternating-current
circuits. The following results are obtained:

• a necessary condition for a rectangle to be tilable by rectangles of given shapes;

• a criterion for a rectangle to be tilable by rectangles similar to it but not all homo-
thetic to it;

• a criterion for a generic polygon to be tilable by squares.

These results generalize the ones of C. Freiling, R. Kenyon, M. Laczkovich, D. Rinne and
G. Szekeres.
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1. Introduction

A rectangle a × b, where a and b are integers, can be tiled by a · b squares. Thus a
rectangle with rational side ratio can be tiled by squares. In 1903 M. Dehn proved the
converse assertion:

Theorem 1.1. [10] A rectangle can be tiled by squares (not necessarily equal) if and only
if the ratio of two orthogonal sides of the rectangle is rational.

Although this assertion is expectable, the proof is complicated. After original proof,
many improvements have been made [2, 3, 18, 25, 32].

The most interesting for us is the approach of R.L. Brooks, C.A.B. Smith, A.H. Stone
and W.T. Tutte [3]. To a tiling of a rectangle they assign a direct-current circuit, and then
deduce Theorem 1.1 from certain properties of the circuit. They also apply the technique
to find a tiling of a square by squares of distinct sizes, see the figure in the front cover of
the journal [13].
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We study finite tilings by arbitrary nondegenerate rectangles. The sides of rectangles
are assumed to be parallel to coordinate axes, i.e., either vertical or horizontal. By the
ratio of a rectangle we mean the length of the horizontal side divided by the length of the
vertical one. We study the following problem posed in [16, p. 218] and [19, p. 3]:

Problem 1.2. Which rectangles can be tiled by rectangles of given ratios c1, . . . , cn?

A related problem of signed tilings is solved in [19].
For n = 1 and c1 = 1 the question of Problem 1.2 is answered by Theorem 1.1. A

necessary condition for arbitrary n was actually proved by M. Dehn: if a rectangle of ratio
c can be tiled by rectangles of ratios c1, . . . , cn then c is (the value of) a rational function
in c1, . . . , cn with rational coefficients.

This function depends only on ”combinatorial structure” of the tiling. For instance, if
a rectangle of ratio c is dissected into 2 rectangles of ratios c1 and c2 by a vertical (respec-
tively, horizontal) cut then c(c1, c2) = c1 +c2 (respectively, c(c1, c2) = c1c2

c1+c2
). The problem

reduces to description of possible functions c(c1, . . . , cn). By the mentioned physical inter-
pretation this is equivalent to a natural problem: describe possible formulas c(c1, . . . , cn)
expressing the conductance of a planar direct-current circuit through the conductances c1,
. . . , cn of individual resistors.

The main idea of the paper is to apply alternating-current circuits (equivalently, cir-
cuits with complex-valued conductances) to the above problems. Our first result is

Theorem 1.3. Suppose that a rectangle of ratio c can be tiled by rectangles of ratios c1,
. . . , cn. Then c = C(c1, . . . , cn) for some rational function C(z1, . . . , zn) such that

(1) C(z1, . . . , zn) has rational coefficients, i.e., C(z1, . . . , zn) ∈ Q(z1, . . . , zn);

(2) C(z1, . . . , zn) is degree 1 homogeneous, i.e., C(tz1, . . . , tzn) = tC(z1, . . . , zn);

(3) if Re z1, . . . , Re zn > 0 then ReC(z1, . . . , zn) > 0.

Problem 1.4. Is the converse theorem true for n ≥ 3?

Parts (1) and (2) of Theorem 1.3 were actually proved by Dehn, see also [17, Lemma 4].
Case n = 1 (respectively, n = 2) of both Theorem 1.3 and its converse is equivalent to
Theorem 1.1 (respectively, to [16, Theorem 5], see also Theorem 3.1 below). For n ≥ 3
the converse theorem cannot be proved by our method, see Example 3.2.

Theorem 1.3 has a clear physical meaning, see §2.4. But this theorem (even together
with its converse) is not algorithmic, i.e., it does not give an algorithm to decide if there
exists a required tiling. Thus it is interesting to get less general but algorithmic results.

A result of this kind was obtained independently by C. Freiling, D. Rinne in 1994 and
M. Laczkovich, G. Szekeres in 1995. It uses the following notion. An algebraic conjugate
of an algebraic number c is a complex root of the minimal integral polynomial of c.

Theorem 1.5. [17, 22] For c > 0 the following 3 conditions are equivalent:

(1) a square can be tiled by rectangles of ratios c and 1/c;

(2) the number c is algebraic and all its algebraic conjugates have positive real parts;

(3) for certain positive rational numbers d1, . . . , dm we have

d1c+
1

d2c+ · · ·+
1

dmc

= 1.
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We present a new short self-contained proof of this result. This new proof is an example
of a natural application of alternating-current circuits. We also get a new algorithmic
result:

Theorem 1.6. For a number c > 0 the following 3 conditions are equivalent:

(1) a rectangle of ratio c can be tiled by rectangles of ratios c and 1/c (in such a way that
there is at least one rectangle of ratio 1/c in the tiling);

(2) the number c2 is algebraic and all its algebraic conjugates distinct from c2 are negative
real numbers.

(3) for certain positive rational numbers d1, . . . , dm we have

1

d1c+
1

d2c+ · · ·+
1

dmc

= c.

More algorithmic results can be found in [16, p. 224]. For similar results on tiling by
triangles see [29]. For higher dimensional generalizations see [25].

We also consider tilings of arbitrary (not necessarily convex) polygons by rectangles.
This generalization reveals new connections between tilings and electrical circuits.

We apply direct-current circuits with several terminals to get a criterion for a generic
polygon to be tilable by squares (Theorem 4.2 below, again not algorithmic). This result
generalizes Theorem 1.1 and [21, Theorems 9 and 12]. An easier related problem of signed
tiling by squares is solved in [15, 20].

We apply alternating-current circuits with several terminals to get a short proof of
a generalization of Theorem 1.5 to polygons with rational vertices [28] (Theorem 4.3
below). We also give basic results on electrical impedance tomography for alternating-
current circuits, cf. [9, 6, 7, 23].

There is a close relationship among electrical circuits, discrete harmonic functions
and random walks on graphs [11, 24, 1]. Our results have equivalent statements in the
language of each of the theories, e.g., see Corollary 4.9 below.

The paper splits naturally into two formally independent parts: §§1–3 and §§4–6.
The first part contains the proof of Theorems 1.3, 1.5 and 1.6. In §2 the basics of

electrical circuits and their connection with tilings are recalled. In §3 the results of §1 are
proved.

The second part concerns some variations. In §4 the results on tilings of polygons,
electrical impedance tomography and random walks are stated. In §5 the results of §2 are
generalized to electrical circuits with several terminals. In §6 the results of §4 are proved.

2. Main ideas

2.1. Electrical circuits

Our approach is based on electrical circuits theory [26]. However, the reader is not
assumed to be familiar with physics. In this section we recall all the required physical
concepts (although the presentation is formal and physical meaning is explained very
briefly). This section does not contain new results. For short proofs see §5.

An electrical network is a connected graph with a nonnegative real number (conduc-
tance) assigned to each edge, and two marked (boundary) vertices.
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For simplicity assume that the graph does not have neither multiple edges nor loops.
Although all the concepts below can be adopted easily for the graphs with multiple edges.
We say that electrical network is planar if the graph is drawn in the unit disc in such
a way that the boundary vertices are in the boundary of the disc and the edges do not
intersect each other.

Fix an enumeration of the vertices 1, 2, . . . , n of the graph such that 1 and 2 are the
boundary ones. It is convenient to denote the number of boundary vertices by b = 2. Let
m the number of edges. Denote by ckl the conductance of the edge between the vertices
k and l. Set ckl = 0 if there is no edge between k and l in the graph.

An electrical circuit is an electrical network along with two real numbers U1 and U2

(incoming voltages) assigned to the boundary vertices.
Each electrical circuit gives rise to certain numbers Uk, where 1 ≤ k ≤ n (voltages at

the vertices), and Ikl, where 1 ≤ k, l ≤ n (currents through the edges). These numbers
are defined by the following axioms:

(C) The Ohm law. For each pair of vertices k, l we have Ikl = ckl(Uk − Ul).
(I) The Kirchhoff current law. For each vertex k > b we have

∑n
l=1 Ikl = 0.

Informal meaning of law (I) is that electrical charge is not aggregated at the nonboundary
vertices. In other words, these laws assert that Uk is a discrete harmonic function. The
numbers Uk and Ikl are well-defined by these axioms by the following classical result.

Theorem 2.1. [31] For any electrical circuit the system of linear equations (C),(I) in
variables Uk, b < k ≤ n, and Ikl, 1 ≤ k, l ≤ n, has a unique solution.

Denote by I1 =
∑n

k=1 I1k the current flowing inside the circuit through vertex 1. The
conductance of an electrical circuit with U1 6= U2 is the number C = I1/(U1−U2). Clearly,
the conductance does not depend on U1 and U2. Thus the conductance of an electrical
network is well-defined. Basic examples of networks and their conductances are shown in
figure 1.

a b1 3 2 b
a

12

C(a, b) = ab
a+b

C(a, b) = a+ b

Figure 1: Series and parallel electrical networks

2.2. Tilings and networks
There is a close relationship between electrical networks and tilings. We say that an

edge kl of a circuit is essential, if Ikl 6= 0. Clearly, the property of an edge being essential
does not depend on U1 and U2 if U1 6= U2.

Lemma 2.2. [3, 4, Theorem 1.4.1] The following two conditions are equivalent:

(1) a rectangle of ratio c can be tiled by m rectangles of ratios c1, . . . , cm;
(2) there is a planar electrical network having conductance c and consisting of m essential

edges of conductances c1, . . . , cm.

Let us sketch the proof of assertion (1) =⇒ (2). Given a tiling as in (1) construct an
electrical network as follows (see figure 2). Take a point in each maximal horizontal cut
of the tiling and in each horizontal side of the tiled rectangle. These points are vertices
of the network. For each rectangle in the tiling draw an edge between the vertices in the
cuts containing the horizontal sides of the rectangle. Set the conductance of the edge to
be the ratio of the rectangle. The obtained network has conductance c, see §5.2 for the
proof.
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Figure 2: Correspondence between tilings and electrical networks

2.3. Formulas for conductance

Let us summarize some useful properties of formulas for conductance.

Lemma 2.3. Suppose that an electrical network consists of m edges of conductances
c1, . . . , cm. Then the conductance of the network C(c1, . . . , cm) has the following properties:

(1) [3] C(c1, . . . , cm) ∈ Q(c1, . . . , cm);

(2) [3] C(c1, . . . , cm) is degree 1 homogeneous;

(3) [3] ∂
∂cj
C(c1, . . . , cm) = (Uk−Ul

U1−U2
)2, where k and l are the endpoints of the edge j;

(4) [27] if c1, . . . , cm > 0 then ∂
∂cj
C(c1, . . . , cm) ≥ 0; if the edge j is essential then the

latter inequality is strict;

(5) [5] if Re c1, . . . , Re cm > 0 then ReC(c1, . . . , cm) > 0.

Remark 2.4. (A. Akopyan, private communication) Property (4) follows from (1), (2)
and (5). Property (5) does not follow from (1), (2) and (4), e.g., the function C(c1, c2) =

(c1 + c2)
c21+c22
c21+2c22

satisfies (1), (2), (4) but not (5).

Property (5) concerns the extension of the function C(c1, . . . , cm) to the complex plane.
This fundamental property does not seem to be payed attention for direct-current circuits.
Certainly it is well-known for alternating-current circuits. Short proof of the lemma is
given in §5.1.

2.4. Alternating-current circuits

Let us explain informal physical meaning of fundamental Lemma 2.3(5) and condi-
tion (3) of Theorem 1.3. This is not used elsewhere in the paper and the reader may
easily skip this subsection.

Informally, an alternating-current circuit is a collection of conductors, condensers,
inductors and a single alternating-voltage source connected with each other.

Formally, an alternating-current circuit is a graph with the following structure:

• two marked (boundary) vertices;

• two functions (voltages) Ũ1(t) = U cosωt and Ũ2(t) = 0 assigned to them;

• division the edges into three types (conductors, condensers and inductors);

• a positive number c̃kl assigned to each edge (called conductance, capacitance or
inductance, depending on the type of the edge).
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The voltages Ũk(t) and the currents Ĩkl(t) are defined by the following axioms:

(C̃) The generalized Ohm law. For each edge kl we have

Ĩkl(t) =


c̃kl(Ũk(t)− Ũl(t)) if kl is a conductor;

c̃kl
d
dt

(Ũk(t)− Ũl(t)) if kl is a condenser;

c̃kl
∫ t

π/2ω
(Ũk(t)− Ũl(t))dt if kl is an inductor.

(̃I) The Kirchhoff current law. For each vertex k 6= 1, 2 we have
∑n

l=1 Ĩkl(t) = 0.

The voltages and the currents can be found using the following well-known algorithm.
Denote by i =

√
−1. Put U1 = U , U2 = 0 and

ckl =


c̃kl, if kl is a conductor;

iωc̃kl, if kl is a condenser;
1
iω
c̃kl, if kl is an inductor.

Define the complex numbers Uk, 3 ≤ k ≤ n, and Ikl, 1 ≤ k, l ≤ n, by direct-current laws
(C), (I). Then Ũk(t) = Re(Uke

iωt), Ĩkl(t) = Re(Ikle
iωt). In this sense alternating-current

circuits are ”equivalent” to direct-current circuits with complex-valued conductances (also
called admittances).

Notice that always Re ckl ≥ 0. Physically this means nonnegative energy dissipation
at the edge kl (which is Re ckl|Uk − Ul|2). Thus a physical meaning of Lemma 2.3(5) is:
”a network consisting of elements dissipating energy also dissipates energy”.

2.5. Positive real functions
This subsection is used in the proof of only assertions (2) =⇒ (3) in Theorems 1.5

and 1.6.
Consider electrical circuits, in which all the edges have conductances z and 1/z, Re z >

0. (They have a natural physical meaning: circuits consisting of condensers and inductors
with incoming voltage of complex frequency z/i.) Let us describe possible conductances
C(z) of such electrical circuits. By Lemma 2.3(1), (2) and (5) the functions C(z) are
positive real, i.e., satisfy condition (1) of the following lemma. Denote by Re∞ = 0,
C(∞) = limz→0C(1/z) and C ′(∞) = limz→0(C(1/z))′.

Lemma 2.5. [5, 14, 16, Lemma 4] For an odd function C(z) ∈ R(z) the following 5
conditions are equivalent:

(1) if Re z > 0 then ReC(z) > 0;
(2) if C(z) = 1 then Re z > 0;
(3) if C(z) = 0 then Re z = 0 and C ′(z) > 0 (here z ∈ C or z =∞);
(4) either C(z) or 1/C(z) equals

d1z

n∏
k=1

z2 + a2
k

z2 + b2k
,

for some integer number n ≥ 0 and real numbers d1 > 0, a1 > b1 > a2 > · · · > bn ≥ 0;
(5) either C(z) or 1/C(z) equals

d1z +
1

d2z + · · ·+
1

dmz

,

for some integer number m ≥ 1 and real numbers d1, . . . , dm > 0.

Parts of the lemma are proved in [5, 14] and in [16] using the results of [30]. A short
proof is given in §5.3.
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3. Proof of main results

3.1. Proof of Theorem 1.3

Hereafter in an electrical circuit or network we allow the conductances to be arbitrary
complex numbers with positive real part. This generalization of the above notion is moti-
vated by §2.4 (and describes both direct- and alternating-current circuits). Theorem 1.3
is an easy consequence of the results of §2:

Proof of Theorem 1.3. Suppose that a rectangle of ratio c can be tiled by rectangles of
ratios c1, . . . , cn. By Lemma 2.2 there is an electrical network of conductance c consisting
of edges of conductances c1, . . . , cn. For each k = 1, . . . , n replace each edge of conductance
ck in the network by an edge of complex conductance zk, Re zk > 0. Let C(z1, . . . , zn) be
the conductance of the obtained network. The function C(z1, . . . , zn) has the properties
(1)–(3) of Theorem 1.3 by Lemma 2.3(1),(2) and (5).

3.2. Proof of Theorem 1.5

Proof of Theorem 1.5. (3) =⇒ (1) [16] Suppose that condition (3) of Theorem 1.5 holds
and, say, m is odd. Take a unit square. Cut off a rectangle of ratio d1c from the square
by a vertical cut. The remaining part is a rectangle of ratio

1− d1c =
1

d2c+ · · ·+
1

dmc

.

Now cut off a rectangle of ratio 1/d2c from the remaining part by a horizontal cut. We
get a rectangle of ratio

d3c+
1

d4c+ · · ·+
1

dmc

.

Continue this process alternating vertical and horizontal cuts. Condition (3) guaranties
that after step (m− 1) we get a rectangle of ratio dmc. We obtain a tiling of the square
by rectangles of ratios d1c, 1/d2c, d3c, 1/d4c, . . . , dmc. Since all dk ∈ Q one can chop the
tiling into rectangles of ratios c and 1/c.

(1) =⇒ (2). Suppose that a square is tiled by rectangles of ratios c and 1/c. By
Lemma 2.2 there exists an electrical network of conductance 1 with edge conductances
c and 1/c. Replace each edge of conductance c (respectively, 1/c) in this network by an
edge of conductance z ∈ C (respectively, 1/z). Let C(z) the conductance of the obtained
network. Then C(z) ∈ Q(z) by Lemma 2.3(1).

Since C(c) = 1 it follows that c is algebraic (C(z) is nonconstant because C(−c) =
−C(c) = −1 by Lemma 2.3(2)). Let z be an algebraic conjugate of c. Then still C(z) = 1.

Let us prove that Re z > 0. Indeed, first assume that Re z < 0. Then Re(−z) > 0
and Re(−1/z) > 0. Thus by Lemma 2.3(5) we have 0 < ReC(−z) = −ReC(z) = −1,
a contradiction. Now assume that Re z = 0. Let zk → z, where each Re zk < 0. Still
0 < ReC(−zk) = −ReC(zk)→ −1, a contradiction. Thus Re z > 0.

(2) =⇒ (3) [16] Let p(z) be a minimal polynomial of c. Put C(z) = p(−z)−p(z)
p(−z)+p(z) . Then

C(c) = 1, C(z) ∈ Q(z), C(z) is odd and all the roots of the equation C(z) = 1 have
positive real part. By Lemma 2.5(2) =⇒ (5) the function C(z) satisfies condition (5)
of Lemma 2.5. Since C(z) ∈ Q(z) it follows by Euclidean algorithm that all dk ∈ Q.
Substituting z = c we get the required condition.
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3.3. Proof of Theorem 1.6

The proof follows the ideas of §3.2 and §5.3.

Proof of Theorem 1.6. (3) =⇒ (1) Analogously to the proof of Theorem 1.5(3) =⇒ (1).
(1) =⇒ (2). Suppose that a rectangle of ratio c is tiled by rectangles of ratios c and

1/c. Rotating through π/2 and stretching the figure we get a square tiled by squares and
rectangles of ratio c2. By Lemma 2.2 there exists an electrical circuit of conductance 1
with edge conductances 1 and c2, in which all the edges are essential. Since there is at
least one rectangle of ratio 1/c in the initial tiling, it follows that the network contains at
least one edge of conductance c2. Replace each edge of conductance c2 (respectively, 1)
in the network by an edge of conductance z ∈ C (respectively, w ∈ C). Let C(z, w) the
conductance of the obtained network. Denote by C(z) = C(z, 1).

Let us prove that c2 is algebraic. Indeed, by Lemma 2.3(4) we have C ′(c2) > 0
because there is at least one essential edge of conductance c2 in the network. Thus C(z)
is nonconstant. By Lemma 2.3(1) it follows that C(z) ∈ Q(z). Since C(c2) = 1 it follows
that c2 is algebraic.

Let z be an algebraic conjugate of c2 distinct from c2 itself. Then C(z, 1) = C(c2) = 1.
Let us prove that z is a negative real number. First assume Im z < 0. Then Re iz > 0.

By Lemma 2.3(2) it follows that ReC(iz, i) = Re(iC(z, 1)) = Re i = 0. Since C(iz, i)
is a rational function it follows that any neighborhood of iz contains a point z′ such
that ReC(z′, i) < 0. Taking sufficiently small neighborhood we get Re z′ > 0 because
Re iz > 0. By continuity a neighborhood of i contains a point w′ such that Rew′ > 0
and still ReC(z′, w′) < 0. The obtained inequalities contradict to Lemma 2.3(5). Case
Im z > 0 is violated similarly. Assume now z > c2. Then by Lemma 2.3(4) we have
1 = C(z) > C(c2) = 1, a contradiction. Case 0 ≤ z < c2 is violated similarly. Thus z < 0.

(2) =⇒ (3) Let p(z) be a minimal polynomial of c2. Since the roots of a minimal
polynomial are all simple it follows that p(z2) = (z2−c2)

∏n
k=1(z

2+b2k) for some b1 > · · · >
bn > 0. Take a polynomial q(z) with rational coefficients such that q(z) = z

∏n
k=1(z

2 +a2
k),

where a1 > b1 > a2 · · · > bn > 0. Consider the odd rational function C(z) = q(z)/(zq(z)−
p(z2)). We have C(c) = 1/c.

Let us check that the function C(z) satisfies condition (3) of Lemma 2.5. The roots
of C(z) are the numbers 0,±ia1, . . . ,±ian. A direct evaluation shows that for each l =
1, . . . , n

C ′(±ial) = −q
′(±ial)
p(−a2

l )
=

2a2
l

(c2 + a2
l )(a

2
l − b2l )

∏
k 6=l

a2
k − a2

l

b2k − a2
l

> 0

by the assumption a1 > b1 > a2 > · · · > bn > 0. Analogously C ′(0) = −q′(0)/p(0) > 0.
Then by Lemma 2.5(3) =⇒ (5) the function C(z) satisfies condition (5) of Lemma 2.5.

Since C(z) ∈ Q(z) it follows by Euclidean algorithm that all dk ∈ Q. Substituting z = c
we get the required condition.

3.4. Remarks to main results

Let us define inductively a series-parallel electrical network. By definition, a network
consisting of a single edge is series-parallel. If a and b are two series-parallel networks
then both their series and parallel ”unions” (see figure 1) are series-parallel.

Theorem 3.1. [5] If a function C(c1, c2) satisfies conditions (1)–(3) of Theorem 1.3 then
C(c1, c2) is the conductance of a series-parallel electrical network with edge conductances
c1 and c2.
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Proof. By conditions (1)–(3) of Theorem 1.3 we have C(c1, c2) =
√
c1c2C(z, 1/z), where

z =
√
c1/c2, and the function C(z) = C(z, 1/z) satisfies condition (1) of Lemma 2.5. By

Lemma 2.5(1) =⇒ (5) it satisfies condition (5). Therefore, say, for m even and C(0) = 0,

C(c1, c2) = d1c1 +
1

d2

c2
+

1

d3c1 + · · ·+
dm

c2

.

All the numbers dk ∈ Q by the Euclidean algorithm. Now the required series-parallel
network is constructed analogously to the proof of Theorem 1.5(3) =⇒ (1).

Example 3.2. A generalization of Theorem 3.1 to the case of 3 variables c1, c2, c3 is
not true. E.g., consider the network with 4 vertices and edge conductances c13 = c1,
c23 = c2, c24 = c1, c14 = c2, c34 = c3. By Lemma 2.3(4) and a symmetry argument it
follows that ∂C(c1, c2, c3)/∂c3 = 0 if c1 = c2. So C(c1, c2, c3) cannot be the conductance
of a series-parallel network, because all the edges of such networks are essential.

4. Variations

4.1. Tilings of polygons by rectangles

In this subsection we study the following problem.

Problem 4.1. Which polygons can be tiled by rectangles of given ratios c1, . . . , cn?

Case n = 1, c1 = 1 of the problem is a description of polygons which can be tiled by
squares, a problem posed in [15]. In case of hexagons such a description was obtained by
R. Kenyon [21]. We give such description for a wide class of polygons.

Hereafter P is an orthogonal polygon, i.e., a polygon with sides parallel to coordinate
axes. Assume that P is simple, i.e., the boundary ∂P has one connected component.
Enumerate the sides parallel to the x-axis counterclockwise in ∂P . Let Iu be the signed
length of the side u, where the sign of Iu is ”+” (”−”) if the P locally lies below (above)
the side u. Let Uu be the y-coordinate of the side u. Assume that P is generic, i.e., the
numbers U1, . . . , Ub are pairwise distinct.

We need the following notion [9]. A sequence of boundary vertices (p1, . . . , pk, q1, . . . , qk)
of a planar network is circular, if the sequence (p1, . . . , pk, qk, . . . , q1) is in counterclockwise
order in the boundary of the unit disc. Denote by Ωb the set of real b × b matrices Cuv
satisfying the following properties:

• Cuv is symmetric;

• the sum of the entries of Cuv in each row is zero;

• if (p1, . . . , pk, q1, . . . , qk) is a circular sequence then (−1)k det{Cpiqj}ki,j=1 ≥ 0.

Theorem 4.2. Let P be a generic orthogonal polygon with b horizontal sides having
signed lengths I1, . . . , Ib and y-coordinates U1, . . . , Ub. Then the following two conditions
are equivalent:

(1) the polygon P can be tiled by squares;

(2) there is a matrix Cuv ∈ Ωb with rational entries such that Iv =
∑b

u=1CuvUu for each
v = 1, . . . , b.

9



Cases b = 2 and b = 3 of this theorem are equivalent to Theorem 1.1 and [21, Theo-
rem 9], respectively. Theorem 4.2 is algorithmic in the particular case when U1, . . . , Ub are
linearly independent over Q. Proof of the theorem is constructive, i.e., gives an algorithm
to construct the required tiling if the latter exists. Theorem 4.2 does not necessarily hold
for nongeneric polygons, e.g., for an orthogonal polygon with

U1 = U3 = 0, U2 = 2, U4 = −4, I1 =
√

2, I2 = 2, I3 = 2−
√

2, I4 = −4.

We also give a short proof of the following result:

Theorem 4.3. [28] A generic orthogonal polygon with rational vertices can be tiled by
rectangles of ratios c and 1/c if and only if a square can be tiled by rectangles of ratios c
and 1/c.

4.2. Electrical impedance tomography

Our approach to Problem 4.1 follows the idea of [21, 7] and uses electrical networks
with several terminals.

Hereafter we allow electrical circuits to have several boundary vertices 1, . . . , b with
prescribed voltages U1, . . . , Ub. If an electrical circuit is planar, we assume that the bound-
ary vertices are enumerated counterclockwise along the boundary of the unit disc. We
do not assume that an electrical circuit is connected but require that each connected
component contains a boundary vertex. The voltages and currents in such circuits are
defined by the Ohm and the Kirchhoff current laws (C) and (I) from §2.

Consider the linear map Cb → Cb which takes the vector of voltages (U1, . . . , Ub) to
the vector of incoming currents (I1, . . . , Ib) = (

∑n
k=1 I1k, . . . ,

∑n
k=1 Ibk) flowing inside the

network through the vertices 1, . . . , b, respectively. The matrix Cuv of this linear map is
called the response of the network. This matrix is symmetric [9].

We reduce the results of §4.1 to the following problems even more interesting in them-
selves:

• Direct problem. Describe possible responses of electrical networks.

• Inverse problem. Describe possible networks having a given response.

These problems are solved for planar direct-current networks [9, 6, 7, 23]. Let us state
certain deep results of Y. Colin de Verdière, E.B. Curtis and J.A. Morrow.

Theorem 4.4. [9, 8, 7, Theorem 5] The set of all possible responses of planar electrical
networks with b boundary vertices and positive edge conductances is the set Ωb.

An electrical network is minimal (or critical) if it has minimal number of edges among
all planar electrical networks with positive edge conductances and with the same response.
The minimality of a network depends only on its graph [7]. In [9, 8, §9] an algorithm for
finding edge conductances in a minimal network with given response is presented. This
algorithm implies the following result.

Theorem 4.5. [9, §6.4] Conductances of the edges in a minimal electrical network are
uniquely determined by the response of the network. Each edge conductance is a rational
function with rational coefficients in the entries of the response.

For alternating-current circuits the direct problem is probably open. Let us state some
basic results. The rest of §4 is not used in the proof of the above results.
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Theorem 4.6. For b = 2 or b = 3 the following 2 conditions are equivalent:

(1) Cuv is the response of a connected electrical network with b boundary vertices and with
edge conductances having positive real parts;

(2) Cuv is a complex b× b matrix has the following 4 properties:

• Cuv is symmetric;

• the sum of the entries of Cuv in each row is zero;

• ReCuv is non-negatively definite;

• if
∑

1≤u,v≤bReCuvUuUv = 0 then U1 = · · · = Ub.

Problem 4.7. Does this result remain true for arbitrary b ≥ 4?

Unlike direct-current networks nonboundary vertices in alternating-current networks
can be detected by the response. For instance, by Theorem 4.6 there are electrical networks

with response
0@ 2 1 −3

1 2 −3
−3 −3 6

1A; any such network necessarily has nonboundary vertices.

4.3. Random walks

A random work on an electrical network (or on a weighted graph) is the Markov
chain with the transition matrix Pkl = ckl/

∑n
j=1 cjk. Such Markov chain is ergodic and

reversible. Denote by k1l1, . . . , kmlm all the edges of the Markov chain. The following
theorem allows to translate the results of §1–§2 to the language of random walks.

Theorem 4.8. [11, page 42] Let P (ck1l1 , . . . , ckmlm) be the probability that a random walk
starting at vertex 1 reaches vertex 2 before returning to 1. Let C(ck1l1 , . . . , ckmlm) be the
conductance of the network (with boundary vertices 1 and 2). Then P (ck1l1 , . . . , ckmlm) =
C(ck1l1 , . . . , ckmlm)/(c12 + · · ·+ c1n).

For instance, a translation of Lemmas 2.3(1) and (5) is:

Corollary 4.9. The probability P (ck1l1 , . . . , ckmlm) is a rational function in ck1l1 , . . . , ckmlm.
If Re ck1l1 , . . . , Re ckmlm > 0 then Re ((c12 + · · ·+ c1n)P (ck1l1 , . . . , ckmlm)) > 0.

The latter result does not necessarily hold for nonreversible Markov chains, e.g., for a
Markov chain with vertices 1, 2, 3, 4 and oriented edges 14, 42, 43.

Nonreversible planar Markov chains have a geometric interpretation as tilings of trape-
zoids by trapezoids [21]. Here a trapezoid is a 4-gon with two sides parallel to the x-axis.
The ratio of the trapezoid is the length of the horizontal middle edge divided by the hight.
Natural problems are: generalize the results of the paper to tilings by trapezoids; infinite
tilings; signed tilings.

5. Generalization of main ideas

5.1. Electrical circuits

Our approach is based on a generalization of the results of §2 to electrical circuits with
b terminals. Short proofs of the results of §2 are obtained in this section as particular
case b = 2. Our proof of Lemma 5.2(3), generalizing Lemma 2.3(3), is probably new. All
the proofs are based on the following fundamental energy conservation law.

11



Claim 5.1. Let E(U, I) be a bilinear function. Consider an electrical network with the
vertices 1, . . . , n such that 1, . . . , b are the boundary ones. Suppose that the numbers Uk,
1 ≤ k ≤ n, and Ikl, 1 ≤ k, l ≤ n, satisfy laws (C),(I) from §2. Set Iu =

∑n
k=1 Iuk. Then∑

1≤k<l≤n

E(Uk − Ul, Ikl) =
∑

1≤u≤b

E(Uu, Iu).

We usually apply this claim for the energy dissipation function E(U, I) = Re(UĪ).

Proof of Claim 5.1. By law (C) we have Ilk = −Ikl. Hence by law (I) we have

∑
1≤k<l≤n

E(Uk − Ul, Ikl) =
n∑
k=1

E(Uk,
n∑
l=1

Ikl) =
∑

1≤u≤b

E(Uu, Iu).

Let us prove Theorem 2.1 for electrical circuits with b boundary vertices and with
complex edge conductances having positive real part.

Proof of Theorem 2.1. Uniqueness. Suppose there are two collections of currents II,IIkl and
voltages U I,II

k satisfying laws (C),(I). Then their difference Ikl = IIkl− IIIkl , Uk = U I
k −U II

k

satisfies (C),(I) for zero incoming voltages U1 = · · · = Ub = 0. Then by Claim 5.1 we have∑
1≤k<l≤n

Re c̄kl|Uk − Ul|2 =
∑

1≤k<l≤n

Re((Uk − Ul)Īkl) =
∑

1≤u≤b

Re(UuĪu) = 0.

Here for each k, l either Re ckl > 0 or ckl = 0. Thus each Re c̄kl|Uk − Ul|2 = 0. Since all
the connected components of the circuit contain boundary vertices it follows that all Uk
are equal. Hence each Uk = 0, Ikl = 0 and thus each IIkl = IIIkl , U

I
k = U II

k .
Existence. The number of linear equations in the system (C),(I) equals the number

of variables. By the previous paragraph the system has a unique solution for U1 = · · · =
Ub = 0. Thus by the finite-dimensional Fredholm alternative it has a solution for any
U1, . . . , Ub.

The following result generalizes Lemma 2.3.

Lemma 5.2. Suppose that an electrical network has b boundary vertices and m edges
of conductances c1, . . . , cm. Then the response of the network Cuv(c1, . . . , cm) has the
following properties:

(1) Cuv(c1, . . . , cm) ∈ Q(c1, . . . , cm)b×b;

(2) Cuv(c1, . . . , cm) is degree 1 homogeneous;

(3) ∂
∂cj
Cuv(c1, . . . , cm) = (Vku − Vlu)(Vkv − Vlv), where k and l are the endpoints of the

edge j and Vpq is the matrix of the linear map (U1, . . . , Ub) 7→ (U1, . . . , Un);

(4) if c1, . . . , cm > 0 then ∂
∂cj
Cuv(c1, . . . , cm) is non-negatively definite;

(5) if Re c1, . . . , Re cm > 0 then ReCuv(c1, . . . , cm) is non-negatively definite.

Proof of Lemma 5.2. (1) By Theorem 2.1 and the Crammer rule the solution {Ikl(U1, . . . , Ub)}
of the system of linear equations (C), (I) consists of linear functions in U1, . . . , Ub with
coefficients being rational functions in c1, . . . , cm. So the entries of the matrix of the linear
map (U1, . . . , Ub) 7→

∑n
k=1 Iuk(U1, . . . , Ub) are rational functions in c1, . . . , cm.

12



(2) Consider the system of linear equations obtained from laws (C), (I) by substituting
tc1, . . . , tcm for c1, . . . , cm. It defines the same voltages as the initial one and the currents
are scaled by t. So C(tc1, . . . , tcm) = tC(c1, . . . , cm).

(3) Set E(U, I) = ∂U
∂ckl

I−U ∂I
∂ckl

. Then E(Uk−Ul, Ikl) = (Uk−Ul)2 and E(Up−Uq, Ipq) =
0 for pq 6= kl. Thus by Claim 5.1 we have

∑
1≤u,v≤b

∂Cuv
∂ckl

UuUv =
∑

1≤u≤b

E(Uu, Iu) =
∑

1≤p<q≤n

E(Up − Uq, Ipq) =

= (Uk − Ul)2 =
∑

1≤u,v≤b

(Vku − Vlu)(Vkv − Vlv)UuUv.

(4) This follows directly from the latter formula.
(5) Assume that for each k, l either Re ckl > 0 or ckl = 0. Take U1, . . . , Ub ∈ R. By

Claim 5.1 we have∑
1≤u,v≤b

ReCuvUuUv =
∑

1≤u≤b

Re(UuĪu) =

=
∑

1≤k<l≤n

Re((Uk − Ul)Īkl) =
∑

1≤k<l≤n

Re ckl|Uk − Ul|2 ≥ 0.

Remark 5.3. If the network is connected then the latter inequality is strict unless U1 =
· · · = Ub.

5.2. Tilings and networks

Part (2) =⇒ (1) of the following result is probably new, cf. [1, 21].

Lemma 5.4. Let P be a generic orthogonal polygon with horizontal sides of signed lengths
I1, . . . , Ib and y-coordinates U1, . . . , Ub. Then the following 2 conditions are equivalent:

(1) the polygon P can be tiled by m rectangles of ratios c1, . . . , cm;

(2) there is a planar electrical circuit with b boundary vertices, m essential edges of
conductances c1, . . . , cm > 0, incoming voltages U1, . . . , Ub and incoming currents
I1, . . . , Ib.

Remark 5.5. Condition (2) itself does not guarantee the existence of a rectangular polygon
with horizontal sides of signed lengths I1, . . . , Ib and y-coordinates U1, . . . , Ub. Lemma
5.4(1) =⇒ (2) is not necessarily true for nongeneric polygons.

Proof of Lemma 5.4. (1) =⇒ (2). Take a generic polygon P tiled by rectangles.
Let us construct the graph of the required network, see figure 3. Consider the union

of the horizontal sides of all rectangles of the tiling. This union splits into several disjoint
segments called horizontal cuts. Paint red (bold) all horizontal cuts except small neigh-
borhoods of their endpoints. Paint blue (dashed) the vertical centerline of each rectangle
in the tiling.

Contract all red segments. Then the blue set ”becomes” a graph G and the polygon
P ”becomes” a topological disc D (since the y-coordinates of the horizontal sides of P
are distinct it follows that each read segment has not more than one common point with
∂P ). Denote by 1, . . . , b the vertices of the graph G obtained from the red segments in
the horizontal cuts containing the sides of P and by b + 1, . . . , n — the other vertices.
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Figure 3: Construction of an electrical network

Clearly, G ⊂ D, G ∩ ∂D = {1, . . . , b} and each connected component of G contains a
boundary vertex. Thus G is a graph of a planar network.

Let us define the voltages, currents and conductances in the network. For each vertex
k = 1, . . . , n of the graph G set Uk to be the y-coordinate of the horizontal red segment
contracted to the vertex. For each edge kl of the graph G, obtained from the vertical
centerline of a rectangle in the tiling, set Ikl and ckl to be the horizontal side (with an
appropriate sign) and the ratio of the rectangle, respectively. The laws (C), (I) are now
checked directly. The constructed network is the required.

Figure 4: Construction of a tiling

(2) =⇒ (1). Take an electrical network as in (2). Construct a tiling of P as follows.
Let e be an edge of the network. Denote by e ↑ (e ↓) the endpoint of e with higher

(lower) voltage (it is well-defined by the assumption that all the edges are essential). By
a face we mean a connected component of the complement to the network in the unit disc
D. Denote by e← (e→) the face that borders the edge e from the left-hand (right-hand)
side while one moves along the edge e from e ↑ to e ↓.

By law (I) it follows that to each face f one can assign a number If in such a way
that Ikl← − Ikl→ = Ikl. Without loss of generality assume minf If = min(x,y)∈P x, where
the minimum in the left-hand side is over all the faces f meeting ∂D.

Let Pe be the rectangle with the vertices (Ie→, Ue↑), (Ie→, Ue↓), (Ie←, Ue↑), (Ie←, Ue↓).
The rectangles Pe, where e runs through all the edges of the network, tile the polygon P by
the following two claims (Pe-s cover P by Claim 5.6 and do not overlap by Claim 5.7).
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Claim 5.6.
⋃
e Pe = P .

Proof. It suffices to prove that ∂
⋃
e Pe ⊂ ∂P . Since ∂P is a simple closed curve in the

plane and
⋃
e Pe is bounded, the claim will follow.

We need the following description of the boundary ∂P , see figure 4. Boundary vertices
split ∂D into b arcs. Start from vertex b and move along the circle ∂D counterclock-
wise. Enumerate the arcs in the order they appear in the motion. Denote by f(v) the
face containing the arc v. Denote by Hv the segment joining the points (If(v), Uv) and
(If(v+1), Uv). Denote by Vv the segment joining the points (If(v), Uv−1) and (If(v), Uv),

where we set U0 = Ub. Clearly, ∂P =
⋃b
v=1(Hv ∪ Vv).

Take a ”generic” point p ∈ ∂
⋃
e Pe, say, in a horizontal side of the ”polygon”

⋃
e Pe.

The point p necessarily belongs to a horizontal side of a rectangle in the tiling, say, to the
top side of a rectangle Pe. Denote by v = e ↑ the vertex of e of higher voltage.

Draw a horizontal line H through the top side of the rectangle Pe. We say that a
rectangle Pd is adjacent if the vertex v is an endpoint of the edge d. Adjacent rectangles
border upon the line H either from above or from below.

First assume that v is nonboundary. A simple induction shows that each point of H
(except a finite set) is bordered by the same number of adjacent rectangles Pd from above
and from below. Since the rectangle Pe borders upon the point p from below and p is
”generic” it follows that some adjacent rectangle Pd borders upon it from above. Thus p
belongs to Int Pe ∪ Pf ⊂ Int

⋃
e Pe, a contradiction.

So v is a boundary vertex. Analogously to the above each point of H −Hv (except a
finite set) is bordered by the same number of adjacent rectangles Pd from above and from
below. Hence p ∈ Hv and thus p ∈ ∂P .

Claim 5.7.
∑

eArea(Pe) = Area(P ).

Proof. This follows immediately from Claim 5.1 because Area(Pkl) = (Uk − Ul)Ikl and
Area(P ) =

∑
1≤u≤b UuIu.

5.3. Positive real functions

Let us prove Lemma 2.5. For a generalization to the case b > 2 see [12].

Proof of Lemma 2.5. (1) =⇒ (2). Indeed, if Re z ≤ 0 then ReC(z) = −ReC(−z) ≤ 0
and thus C(z) 6= 1.

(2) =⇒ (1). Consider the equation C(z) = w. Move w continuously in the half-plane
Rew > 0. The roots cannot cross the line Re z = 0 (because Re z = 0 implies ReC(z) = 0
for an odd function C(z) ∈ R(z)). Thus for each w in the half-plane Rew > 0 all roots
of C(z) = w are in the half-plane Re z > 0. Since C(z) is odd it follows that the same is
true for the half-planes Rew < 0, Re z < 0. So (1) holds.

(1) =⇒ (3). Suppose that C(z) = 0, where z ∈ C. Then Re z = 0 because Re z >
0 =⇒ ReC(z) > 0 and Re z < 0 =⇒ ReC(z) = −ReC(−z) < 0. Since condition (1)
and its converse hold in a neighborhood of the point z it follows that C ′(z) > 0. A simple
limiting argument proves the same for z =∞.

(3) =⇒ (4) Assume for simplicity that C(∞) 6= 0. Let z1, . . . , zm be the roots of C(z).
Since C ′(zk) > 0 it follows that the roots are simple. Thus C(z) has not more than m
poles. The roots split the projective line Re z = 0 into m ”segments”. Since C ′(zk) > 0
it follows that for sufficiently small ε > 0 we have C(zk − iε) < 0 and C(zk + iε) > 0. By
intermediate value theorem it follows that each of the segments contains a pole of C(z).
Thus all the m poles of C(z) belong to the line Re z = 0 and alternate with the roots.
So (4) holds.
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(4) =⇒ (5). Denote by htC(z) the sum of the degrees of the nominator and the
denominator of C(z). The proof is by induction over htC(z). If htC(z) = 1 then there is
nothing to prove. Assume that, say, C(z) equals the expression from condition (4), where
n ≥ 1 and bn 6= 0.

Denote by r(z) = 1/(C(z)− d1z) and q(z) = 1/C(z). Let us prove that r(z) satisfies
condition (3). Indeed, the roots of r(z) are the numbers ±ib1, . . . ,±ibn. For each l =
1, . . . , n

r′(±ibl) = q′(±ibl) =
2

d1(a2
l − b2l )

∏
k 6=l

b2k − b2l
a2
k − b2l

> 0

by the condition a1 > b1 > a2 > · · · > bn ≥ 0.
Hence by Lemma 2.5(3) =⇒ (4) it follows that r(z) satisfies condition (4) as well. On

the other hand ht r(z) < htC(z). By inductive hypothesis, r(z) satisfies condition (5).
Thus C(z) = 1/(d1z + r(z)) also satisfies condition (5).

(5) =⇒ (1). This follows by a simple induction over m.

6. Proof of variations

6.1. Proof of Theorem 4.2

Proof of Theorem 4.2. (1) =⇒ (2). Let the polygon P be tiled by squares. By Lemma 5.4
there is a planar electrical circuit with edge conductances 1, incoming voltages U1, . . . , Ub
and incoming currents I1, . . . , Ib. Let Cuv be the response of the circuit. Then Iv =∑
CuvUu. By Lemma 5.2(1) all the entries of Cuv are rational. By Theorem 4.4 we have

Cuv ∈ Ωb.
(2) =⇒ (1). Let Cuv ∈ Ωb be a matrix with rational entries such that Iv =

∑
CuvUu.

By Theorem 4.4 there are planar electrical networks with the response Cuv. Take a
minimal network with this property. By Theorem 4.5 the conductances of all the edges of
the network are rational. Set the incoming voltages to be U1, . . . , Ub. Then the incoming
currents are I1, . . . , Ib. Delete all unessential edges from the circuit. By Lemma 5.4 it
follows that the polygon P can be tiled by rectangles of rational ratio, and hence by
squares.

Corollary 6.1. (of Lemmas 5.2, 5.4 and Theorem 4.4) If a generic orthogonal polygon
P can be tiled by rectangles of ratios c1, . . . , cn then there is a function Cuv(z1, . . . , zn)
satisfying conditions (1), (2) and (5) of Lemma 5.2 such that C(c1, . . . , cn) ∈ Ωb and
Iv =

∑
1≤u≤bCuv(c1, . . . , cn)Uu for each v = 1, . . . , b.

6.2. Proof of Theorem 4.3

Proof of Theorem 4.3. ⇐= . This holds because a polygon with rational vertices can be
tiled by squares.

=⇒ . Suppose that P can be tiled by rectangles of ratios c and 1/c. Let us prove
analogously to the proof of Theorem 1.5(1) =⇒ (2) that all algebraic conjugates of c have
positive real parts. Then Theorem 4.3 will follow from Theorem 1.5(2) =⇒ (1).

Consider the circuit given by Lemma 5.4. Replace each edge of conductance c (re-
spectively, 1/c) in the circuit by an edge of conductance z ∈ C (respectively, 1/z). Let
Cuv(z) be the response of the obtained circuit. Consider the energy dissipation func-
tion E(z) =

∑
1≤u,v≤bCuv(z)UuUv. Since each Uu ∈ Q it follows by Lemma 5.2(1) that

E(z) ∈ Q(z). Clearly, E(c) =
∑

1≤u≤b IuUu = Area(P ). Thus E(c) ∈ Q and E(c) > 0.
Since E(z) ∈ Q(z) and E(c) ∈ Q it follows that c is algebraic (E(z) is nonconstant

because E(−c) = −E(c) < 0 by Lemma 5.2(2)). Let z be an algebraic conjugate of c.
Then E(z) = E(c) > 0.
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Let us prove that Re z > 0. Indeed, first assume that Re z < 0. Then by Lemma 5.2(5)
we have 0 ≤ ReE(−z) = −ReE(z) < 0, a contradiction. A simple limiting argument
shows that assumption Re z = 0 also leads to a contradiction. Thus Re z > 0.

6.3. Proof of Theorem 4.6

Proof of Theorem 4.6. (1) =⇒ (2). This follows from Lemma 5.2(5) and Remark 5.3.
(2) =⇒ (1). For b = 2 there is nothing to prove. Assume that b = 3. Let δ > 0 be a

small number, ruv = −ReCuv − δ, muv = − ImCuv. By the assumption of the theorem
it follows that

„
C11 C12
C21 C22

«
is positively definite. Thus

„
r31 + r12 −r12
−r12 r12 + r23

«
is positively definite

for sufficiently small δ. Hence r12 + r23, r31 + r12, r12r23 + r23r31 + r31r12 > 0. Analogously
r23 + r31 > 0. Thus at least two of the numbers r12, r23, r31 are positive.

If r12, r23, r31 > 0 then the required network is a triangle 123 with edge conductances
ckl = rkl + imkl + δ.

Now assume that exactly one of the numbers r12, r23, r31, say, r31 is nonpositive. Take
a large number M and denote by ∆M = r12r23 + r23r31 + r31r12 + iM(r23 + r12). The
required network is a complete graph on the vertices 1, 2, 3, 4 with edge conductances

c12 = im12 + δ, c14 = ∆M/r23,
c23 = im23 + δ, c34 = ∆M/r12,
c31 = im31 + δ − iM, c24 = ∆M/(r31 + iM).

Clearly, for M2 > (r12r23 + r23r31 + r31r12)|r31|/(r23 + r12) we have all Re ckl > 0.
Let us show by electrical transformations that the network has response Cuv. Indeed,

replace the ”letter Y ” formed by the edges 14, 24 and 34 by a ”triangle ∆” formed by 3 new
edges of conductances c′12 = r12, c

′
23 = r23 and c′31 = r31 + iM . This Y∆-transformation

does not change the response [21, page 12]. The obtained network has 3 pairs of multiple
edges. Thus it has the same response as a triangle with edge conductances r12 + im12 + δ,
r23 + im23 + δ, r31 + im31 + δ. So the network has the response Cuv.
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