
Part 1

Problem 1-1.

Proof. a) Let a function g be determined on [−π, π] and periodical with
period 2π. Consider the segment [x1, x0], x1 = 1, y1 = π

2
and let t0 be its

midpoint. Denote by xn, tn the n-th preimages of x0, t0 taken in [−π
2
, π

2
].

Suppose [t0, x0]
g−→ [x1, t0] acts on t0 as a translation. Now let [x1, t0]

g−→ [t1, x1]
act so that g(2) ≡ sin on [t1, x1], similarly for [x2, t1] and so on. Similarly for
[−π

2
, 0]. Let g(x) = g(π − x),∀x ∈ [π

2
, π] and similarly for [−π,−π

2
]. It is

easily seen that the resulting function satisfies the conditions of Problem 1-1
and moreover is continuous.
b) Divide all points into classes such that their images under cos are the same.
Each class will be represented by a point of [0, π]. The class containing a
point x will be denoted by [x]. Now determine the action of the function
g on the classes as follows. For the class containing a fixed point x0 let
g([x0]) = x0. Divide the remaining classes into sets of the form

{. . . , [cos(−1)(α)], [α], [cos(α)], [cos(2)(α)], . . . }.

The divide these sets into pairs, and for the pair generated by classes [α], [β]
determine the following action: g([cos(n)(α)]) = g([cos(n)(β)]), g([cos(n)(β)]) =
g([cos(n+1)(α)]). Clearly the square of the resulting function is cos.

Solutions of problems 1-2, 1-3, 1-4 are contained in a paper of V. Vikola
and A. Apostolov, see ”Matematicheskoe prosveschenie”, year 2004, vol. 9.

Problem 1-5.

Proof. Let us consider what are possible forms of the substitutions.

1. The identical substitution. It is its own square.

2. A transposition. Its square is the identical substitution.

3. A product of two disjoint transpositions. Its square is the identical
substitution.

4. A cycle of length 3. Its square is the cycle of length 3 inverse to the
original one.

5. A cycle of length 4. Its square is a product of disjoint substitutions.
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In total, we get 1 + 3 + 8 substitutions which are squares of substitutions.
In the case of 9 elements, a similar argument implies that the cubes are any
substitutions without cycles of length 6 and with 0 or 3 cycles of length 3.

Part 2

Problem 2-1.

Proof. a) Let f(x) = x+ c. Then f (λ)(x) = x+ λc.
b) Let f(x) = αx. Then f (λ)(x) = αλx.
c) Let f(x) = αx+ c. We assume that α 6= 1 (cf. a). Then

f(x) = α

(
x− c

1− a

)
+

c

1− α
.

Therefore

f (λ)(x) = αλ
(
x− c

1− α

)
+

c

1− α
.

d) Let f(x) = axn. We assume that a 6= 1 (cf. b). The solution of this
problem is similar to part c and this is not an occasion.

f(x) = 1−n
√
c(x/ 1−n

√
c)n.

f (λ)(x) = 1−n
√
c(x/ 1−n

√
c)λn.

Problem 2-2.

Proof. Let f(x) := x2 − 2. We substitute x in f by u+ 1
u
. We have

f(u+
1

u
) = u2 +

1

u2
.

Further

f (λ)(u+
1

u
) = u2λ +

1

u2λ
.

Then

f (λ)(x) =

(
x+
√
x2 − 1

2

)2λ

+

(
x−
√
x2 − 1

2

)2λ

.
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Problem 2-3-a.

Proof. Set z = u+ 1
u
. As z /∈ R, |u| 6= 1. By the previous theorem

f (n)(z) = f (n)(u+
1

u
) = u2n +

1

u2n
.

We have

lim
n→∞

|u2n +
1

u2n
| = +∞.

Problem 2-3-b.

Proof. Let f(x) be a polynom of degree n with the highest coefficient 1. Let
x1, ..., xn be roots of f . The coefficients

fn(x) := (x− x1)...(x− xn)

are symmetric polynomials of x1, ..., xn with integer coefficients. Therefore
all coefficients of fn are polynoms of the elementary symmetric polynoms
(:=coefficients of f). Therefore all coefficients of fn are integers. As |xi| = 1
for all i, |xki | = 1 for all i and k. Therefore for any k the coefficients of f is
smaller or equal to n!. Hence there exist different numbers k1, k2 such that
fk1 = fk2 . But then the set of numbers

{xk11 , ..., x
k1
n } and {xk11 , ..., x

k1
n }

coincide. Therefore xi-th are roots of unity (see also ”Matematicheskoe
Prosveschenie”, year 2004, vol. 9).

This problem was invented by M. Kontsevich.
Problem 2-3-c.

Proof. Let n be a degree of P (x) and {x1, ..., xn} be roots of P (x). Then the
roots of

unP (u+
1

u
)

are solutions of equality u + 1
u

= xi. As x∈[−1.99, 1.99], all roots are purely
complex and has length 1. Therefore polynom unP (u + 1

u
) has integer coef-

ficients, and all roots of this polynom are roots of unity by Problem 2-3-c.
Let ui be root of unity of degree mi, such that ui is a root of P (x). Then uri
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is a root of polynom unP (u+ 1
u
) for any integer r such that (r,mi) = 1 (see

also ¡¡ ¿¿, year 2004, vol. 9).
There exists N such that m > N and for any primitive root of unity u

of degree m there exists number r, such that (m, r) = 1 and 2Reur > 1.99.
Therefore there exists a finite set S such that any root of a polynom P (x),
which satisfies the conditions of the problem, lies in S.

Part 3

Problem 3-1.

Proof. Let K be a big map. Introduce the map f : K → K that maps each
point of the big map to its point lying under the corresponding point of the
small map. Then the problem reformulates as follows: find a fixed point for
f . Clearly f(K) is a rectangle in K, f(f(K)) is a rectangle in f(k) and so on.
We obtain a sequence of similar rectangles embedded into each other, such
that their greater sides form a geometrical progression whose denominator
is less than 1. These rectangles have a single common point x. Suppose
a 6= 0 is the distance between x and f(x). There exists a rectangle f (m)(K)
whose diagonal has length less than a. Since f(x) lies inside f(f (m)(K)) and
f (m+1)(K) lies inside f (m)(K), the distance between x and f(x) is less than
a, a contradiction. Thus x = f(x).

Problem 3-2.

Proof. Consider the function f(x) =
√

1 + x. Our sequence has the form

xn := f (n)(1). Solving the equation f(x) = x we see that 1+
√

5
2

is a single

fixed point of f . Furthermore for 0 < x < 1+
√

5
2

we have the double inequality

x < f(x) < 1+
√

5
2

. Hence the sequence xn is strictly increasing and bounded
and hence has some limit h. Since f is continuous, the sequence f(xn) tends

to f(h), whence f(h) = h. Thus h = 1+
√

5
2

.

Problem 3-3.

Proof. Denote f(x) := sin(tg(x)), g(x) := tg(sin(x)). We have to find the
limit

lim
x→0

f(x)− g(x)

g−1(x)− f−1(x)
.
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Observe that f , g, f−1 and g−1 are infinitely differentiable in some neighbor-
hood of zero and fix 0. Now observe that limx→0

f(x)
x

= 1. The same is true
for g, f−1 and g−1.

Suppose that for h(x) = g−1(x)− f−1(x) first k− 1 derivatives are zeroes
at zero and the kth derivative is not. Then

lim
x→0

g−1(x)− f−1(x)

xk
=
h

k times︷︸︸︷
′′ ··· ′(0)

k!
.

Substitute f(x) for x. We get

lim
x→0

g−1(f(x))− f−1(f(x))

(f(x))k
=
h

k times︷︸︸︷
′′ ··· ′(0)

k!
.

Hence

lim
x→0

g−1(x)− f−1(x)

g−1(f(x))− x
= 1.

From limx→0 f
−1(x) = 1 we get

lim
x→0

f−1(f(x))− f−1(g(x))

f(x)− g(x)
= 1.

Let s(x) := f−1(g(x)). Then the problem reduces to finding the limit

lim
x→0

x− s(x)

s−1(x)− x
.

If s(x) in a neighborhood of zero decomposes to the Taylor series of the
form x+axk+. . . then the Taylor series for s−1(x) has the form x−axk+. . . .
Thus the limit of the ratio of the numerator and the denominator equals
1.

Part 4

Problem 4-1.
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Proof. We introduce a coordinate system such that A has coordinates (0, 0),
point B – (0, 1), point C – (1, 0). Let X be a point of coordinates (a, b).
Then after an ”attraction” to one of the points A,B,C we have points with
coordinates. (

a

2
,
b

2

)
,

(
a

2
+

1

2
,
b

2

)
,

(
a

2
,
b

2
+

1

2

)
Hence, for any ε > 0 there exists n such that after several ”attractions”
both coordinates a and b becomes bigger then −ε. Therefore after several
attractions distance between any point and 4ABC becomes smaller than ε.
Without loss of generality we assume that x ∈ 4ABC.

Attraction to A of a set X ⊂ 4ABC produces a set XA, which is 4 times
smaller by area. It is easy to see that area of

XA ∪ XB ∪ XC

is smaller than 3/4 of area of X or is equal to it. Thus after n-th attraction
any point of ABC comes to union of triangles (¡¡Serpinski’s curpet¿¿), the
common area of which is (3/4)n of ABC or smaller. Therefore there exists a
figure F with area 0.00000001 such that any sequence of attractions of any
point hits F.

Problem 4-2.

Proof. Denote f(x) = x2 − 10. The equation f(x) = x has exactly two

real solutions, namely x1,2 = 1±
√

41
2

. Note that x1, x2 are fixed points of
the map x → f(x). For certainty assume x2 > x1. Let x∗2 be the root of
f(x) = x2 distinct from x2, and let y1, y2 be roots of f(x) = x∗2 such that
y1 < y2. Observe that f is monotonous at segments [x∗2, y1] and [y2, x2] and
the images of these segments coincide with [x∗2, x2]. It is important that the
derivative of f at [x∗2, y1] and [y2, x2] is not less than 3.

For all x ∈ [−10, x∗2]∪ [x2,+∞) the sequence x, f(x), f(f(x)), ... tends to
infinity and increases starting with the second term. Hence the set of points
x such that the limit for x, f(x), f(f(x)), ... does not exist or is not infinite,
coincides with

∩if (−i)([x∗2, x2]) = ∩if (−i)([x∗2, y1] ∪ [y2, x2]).

The preimage f (−i)([x∗2, y1] ∪ [y2, x2]) consists of 2i+1 pieces, and each piece
maps bijectively to some piece f (−i+1)([x∗2, y1]∪ [y2, x2]). Since the derivative
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of f is not less than 3 on [x∗2, y1] ∪ [y2, x2], the total length f (−i)([x∗2, y1] ∪
[y2, x2]) does not exceed 2/3 of the total length of f (−i+1)([x∗2, y1] ∪ [y2, x2]).
Thus it is evident that f (−i)([x∗2, y1]∪ [y2, x2]) < 0.0000001 for some i. Hence
f (−i)([x∗2, y1] ∪ [y2, x2]) < 0.0000001 is the required system of segments that
contains all points x such that the limit of x, f(x), f(f(x)), ... does not exist
or is not infinity.

Part 5

Problem 5-1.

Proof. Let us find the derivative of

(f (n)(x)− x)′ = − sin(f (n−1)) · (f (n−1))′ − 1.

Observe that further similar decomposition of the derivative shows that the
first term has the absolute value not greater than 1. Hence the function
f (n)(x)−xmonotonically decreases. Furthermore the zero clearly is a solution
for cos x = x, and this is the only solution for the original equation.

Problem 5-2.

Proof. Let us start with solving of the equation f(x) = x, that is, 1− x2 =

x ⇔ x2 + x − 1 = 0. Its solutions are x1,2 = −1±
√

5
2

. Furthermore for

x < −1−
√

5
2

the values of f (n)(x) decrease. The image of [−1, 0] is the segment
[0, 1], hence the equation has no solutions on this segment. Similarly we may
take its preimage, the preimage of its preimage and so on to obtain that
the equation has no solutions on [−1−

√
5

2
, 0]. Now denote −1+

√
5

2
by ϕ and

observe that ∀x ∈ [0, ϕ] f(x) ∈ [ϕ, 1] and ∀x ∈ [ϕ, 1] f(x) ∈ [0, ϕ]. Thus
for iterations of f with odd numbers the only roots are x1,2. Now consider
f (2). It is determined by the polynomial 2x2 − x4 of degree 4. The function
f (2)(x) − x has four roots, two of which are x1,2 and two others are 0 and
1. This implies that on [0, ϕ] the graph of f (2) is located on one side of line
y = x, and iterations f (2) that are iterations of f with even numbers will
change the value of f (2k)(x) monotonously inside the interval (0, ϕ). Hence
this interval contains no solutions. Similarly for (ϕ, 1). Thus there exist two

solutions −1±
√

5
2

for all n and two more solutions 0 and 1 for even n.

Problem 5-3-b.
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Proof. Let f, g be a pair of functions such that

lim
x→0

f(x) = lim
x→0

g(x) = 0.

If limx→0
g(x)
f(x)

= 0 then we will allow notation o(f(x)) for g(x). We will prove
a statement more general than that of Problem 5-3-b.

Statement. If f(x) = x − x3

6
+ o(x3) then lim

n→∞

√
nf (n)(x0) =

√
3 for all

x0 sufficiently close to 0. To prove this, denote the function
√
x by SQ(x).

Consider the function
f̃ := SQ−1 ◦ f ◦ SQ.

It is easy to see that (SQ−1 ◦ f ◦ SQ)(x) = x+ 1
3

+ o(1).

Proposition. Suppose for some function f̃ we have

f̃(x) = x+
1

3
+ 0(1).

Then for all x with sufficiently small absolute value we have lim
n→∞

f̃ (n)(x)
n

= 1
3
.

Proof. For any x with sufficiently small absolute value and for all ε > 0 there
exists N such that for any n > N we have

f (n+1)(x) ∈ [f (n)(x) +
1

3
− ε, f (n)(x) +

1

3
− ε].

Hence for any n > N we have

f (n)(x) ∈ [f (N)(x) +
1

3
(n−N) + (n−N)ε, f (N)(x) +

1

3
(n−N)− (n−N)ε]

and thus
1

3
− ε+

f (n)(x)

n−N
<
f (n)(x)

n−N
<

1

3
− ε+

f (n)(x)

n−N
.

Consequently there exists N ′ such that for all n > N ′ we have

1

3
− 2ε <

f (n)(x)

n
<

1

3
+ 2ε.

Hence lim
n→∞

f (n)(x)
n

= 1
3
.
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Suppose x = SQ(y). Note that

SQ(−1)(f (n)(x)) = SQ(−1)(f (n)(SQ(y))) = (SQ(−1) ◦ f ◦ SQ)(n)(y).

Remind that f̃ := SQ(−1)◦f ◦SQ. By the above Proposition, lim
n→∞

f̃ (n)(y)
n

= 1
3
.

Hence

lim
n→∞

( 1
f (n)(x)

)2

n
=

1

3
.

Thus lim
n→∞

√
nf (n)(x) =

√
3.

For conjugating function (SQ) we can use the function e−
1
x2 as well. In-

vestigate this case by yourself.
Problem 5-3-4.The solution of this problem coincides with that of Prob-

lem 5-3-2 but we find it worth while to repeat it.

Proof. We will prove a statement more general than that of Problem 5-3-2.
Statement. If f(x) = x− axk + o(xk) then

lim
n→∞

k−1
√
nf (n)(x) = k−1

√
1

(k − 1)a

for all x sufficiently close to 0.
Denote the function k−1

√
x by SQ(x) and consider the function

f̃ := SQ−1 ◦ f ◦ SQ.

It is easy to see that (SQ−1 ◦ f ◦ SQ)(x) = x+ (k − 1)a+ o(1).
Statement. Suppose for some function f̃ we have

f̃(x) = x+ α + 0(1).

Then for all x with sufficiently small absolute value we have lim
n→∞

f̃ (n)(x)
n

= α.

Suppose x = SQ(y). Note that

SQ(−1)(f (n)(x)) = SQ(−1)(f (n)(SQ(y))) = (SQ(−1) ◦ f ◦ SQ)(n)(y).

Remind that f̃ := SQ(−1) ◦ f ◦ SQ. By the above Proposition lim
n→∞

f̃ (n)(y)
n

=

(k − 1)a. Hence

lim
n→∞

( 1
f (n)(x)

)(k−1)

n
= k−1

√
1

(k − 1)a
.

Thus lim
n→∞

k−1
√
nf (n)(x) = k−1

√
1

(k−1)a
.
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Problem 5-5.

Proof. Let f(x) = x − exp(−1/x2), xn = f (n)(x) and let yn = 1/xn. Then
we have yn+1 − yn ∼ yn exp(y−2

n ).
Change our equation with a differentiable because it will not change

asymptotics. Let estimate function f(n) for which y′ = ye−y
2
, dy/yey

2
= 1,

or
∫ h

1
exp(u2)/u2du2 = 2h + C. We can see that for sufficiently large y y2 is

constant comparing to exp(y2), From asymptotic point of view we can change
function to z such that

1
2h2

∫ h
1
du2eu

2 ∼ t, so eh
2

2h2 ∼ n
or
h2 ∼ ln(n) + 2 ln(h) ∼ ln(n) + ln(ln(n)) h ∼

√
ln(n).

Hence lim
√

ln(n) · xn = 1.

Part 6

Problem 6-1.

Proof. Let f(x) commute with y(x). Then 2f(x) = f(2x). Note that

f(1) = 2f(
1

2
) = 4f(

1

4
) = ....,

and so f(0) = 2f(0), hence f(0) = 0. Let us show that f(x)
x

is a constant. In
fact,

f(x)

x
=
f(x

2
)

x
2

=
f(x

4
)

x
4

= ... = f ′(0)

for any x. Hence f(x) = f ′(0)x.

Problem 6-2.

Proof. Consider an arbitrary continuous function f2,4 defined on [2, 4] and
equal to 0 at its endpoints. By formulas

f(2x) = 2f(x), f(−x) = f(x), f(0) = 0

extend f2,4 to the whole real axis. Obviously the resulting function is defined
and differentiable at all points including zero. If f2,4 is not differentiable in
some internal point thenobviously the same holds for f .
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Part 7

Problem 7-1

Proof. a) We will prove this problem using mathematical induction.
The base obviously holds.

Inductive step: n→ n+ 1.

cos(n · arccos(x)) =
= x cos((n− 1) · arccos(x))− sin(arccos(x)) sin((n− 1) arccos(x)) =

= x2 cos((n− 2) · arccos(x))− sin2(arccos(x)) sin((n− 2) arccos(x))−
2x sin(arccos(x)) sin((n− 2) arccos(x)) =

= x2 cos((n− 2) · arccos(x))− (1− cos2(arccos(x))) cos((n− 2) arccos(x))−
2x sin(arccos(x)) sin((n− 2) arccos(x)).

It is clear that the first and the second summand of this sum are polynomials.
As

2x sin(arccos(x)) sin((n− 2) arccos(x)) =
= 2x cos(arccos(x)) cos((n− 2) arccos(x))− 2x cos((n− 1) arccos(x)),

, cos(n arccos(x)) is a polynom.
b) We have

sin((2n− 1) arcsin(x)) = sin((2n− 1)(π
2
− arccos(x))) =

= sin( (2n−1)π
2
− (2n− 1) arccos(x))) = ± cos((2n− 1) arccos(x)),

Therefore sin((2n− 1) arcsin(x)).
) We will prove this problem using mathematical induction. The base obvi-
ously holds.

Inductive step: n→ n+ 1.
n→ n+ 1.

tan(n arctan(x)) =
tan((n− 1) arctan(x)) + x

1− x tan((n− 1) arctan(x))
.

In this fraction the numerator and the denumerator are rational functions.
Therefore the quotient of them is a rational function too.

Problem 7-2.

Proof. The set of roots of sin(x) = 0 is denumerable. From the other hand
the number of roots of P (x) = a is always countable for any a. Therefore
sin(x) is not conjugated to a polynom.
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Problem 7-3

Proof. We assume that c 6= 0 (cf. 2-1-c). If we find a function R such that
R ◦ f ◦ R(−1) is a linear function. Hence we know all fractional iterations of
linear function, such function R provide a solution of problem 7-3. First we
conjugate f by function R1 = x+ a

c
. We have

f1 := R1 ◦ f ◦R(−1)
1 = α +

β

x
,

where α and β are some numbers. Then we conjugate f1 by R2 := x
√
β).

We have

f2 = R2 ◦ f1 ◦R(−1)
2 s+

1

x

. Let λ be a number such that λ(λ − s) − 1 = 0. We conjugate f2 by
R3 := 1 + 1

x+λ
. We have

f3 := R2 ◦ f ◦R(−1)
2 .

The function f3 is linear.

Problem 7-4.

Proof. Note that

(fn)′(0) = f ′(f(f(· · · )))(0) · f ′(f(· · · ))(0) · · · f ′(0) = kn.

Then

(R ◦ f ◦R(−1))′(0) = R′(f(R(−1)(0)))f ′(R(−1)(0))(R(−1))′(0) =

= f ′(0) ·R′(0) · (R(−1))′(0) = f ′(0).

We recall that |f ′(0)| = |k| < 1. Let q be a real number such that q : |k| <
q < 1. As |f ′(0)| < q, there exists a neighborhood of 0 such that for any
point from this neighborhood |f(x)| < q |x|. Therefore for any point x of
this neighborhood

|fn(x)| < qnx,

and hence f (n)(x) ⇒ 0 for n→∞.

Problem 7-5.
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Proof. We’ll start our proof with some useful facts.

Proposition. Let f be a twice differentiable function such that f(0) = 0
and f ′(0) = k, for 0 < k < 1. Then

∃C > 0∃ε > 0 | ∀x ∈ (−ε, ε) |f (n)(x)′| < Ckn.

Proof. Let f, g be functions such that

lim
x→0

f(x) = lim
x→0

g(x) = 0.

If function g(x)
f(x)

exists and is bounded in 0 neighborhood, we will write

O(f(x)) instead of g(x).
Let us find f (n)(x) =

f ′(x)f ′(f(x))...f ′(f (n−1)x).

By
f ′(f (m)(x)) = k(1 +O(f (m)(x))) =

we conclude that

f (n)′(x)

kn
= (1 +O(x))(1 +O(f(x)))...(1 +O(f (n−1)(x))).

Series
x+ f(x) + f(f(x)) + ...

is absolutely convergent, there exists constant number C such that f (n)(x) <
Ckn.

For function f and integer m we will write f [m] for m-th derivative of f .

Proposition. Let f be a function such that f(0) = 0 and f ′(0) = k, for
−1 < k < 1. Then

∀m ≥ 1∃Cm > 0∃εm > 0 | ∀x ∈ (−εm, εm)|f (n)(x)[m]| < Cmk
n.

Proof. We will use the following lemma:

Proposition. Let exist a constant C for some m > 0 that, for each
r ≤ m we have f (n)(x)[m] ≤ Ckn, then for each r such that 1 < r ≤ m we
have (f ′(f (n)(x)))[r] ≤ C ′kn for some constant C ′.
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Proof. When we differentiate f ′(f (n)(x)) at most m times in each summand
has f (n) or derivative f (n) with order not more than m.

Let us recall f (n)(x)′ =

f ′(x)f ′(f(x))...f ′(f (n−1)(x)).

Note that f (n−1)(x)[m] = (f (n−1)(x)[1])[m−1]. We will prove the statement
using induction. Base is a previous Proposition. Inductive step m→ m+ 1.
Expression f (n)(x)′ is a product of n parts and taking its m-th derivative is a
sum of nm summands, each having no more than m factors f (n)(x)′ changed.
Consider all expressions with exactly r ≤ m factors changed. Derivative of
changed factor f ′(f (s))(x) is less or equal to C ′ks, sum of changed factors is
less or equal to

m!kn−r
∑

i1,...,ir≤n

r∏
q=1

(C ′kiq) = m!C ′rkn−r
r∏
q=1

(1+...+kn) ≤ m!C ′rkn−r
(

1

1− k

)r
.

Obviously, summing those for all r is less or equal to C ′′kn for some C ′′ >
0.

If for a set F of continiously differentiable functions there exists C such
that ∀f ∈ F we have

|f(x)| < C and |f ′(x)| < C

for each x, then there exists a sequence of distinct functions f1, f2, ..., fn
from F ([?]Z) Arzel-Ascoli’s theorem). From evenly boundeness of m-th

derivatives of f (n)

kn
for each m ≥ 1, there exists a sequence n1, n2, ... such that

sequence f (n1)

kn1
, f

(n2)

kn2
, ... converges evenly with series of its m-th derivatives for

all m ≥ 1. Hence, sequence

f (n1)

kn1
,
f (n2)

kn2
, ...

converges evenly, hence, it converges to G, which is the limit of this sequence
at each point, from which we conclude that G is smooth. From the equality

f (n−1)(f(x))

kn−1
= k

f (n)(x)

kn

14



we have
G(f(x)) = kG(x).

Derivative at 0 of all functions in sequence f (n)(x)
kn

equals 1, so derivative of
G(x) at 0 is 1. Hence, G is invertible in 0 neighborhood f(x) = G(−1)(kG(x)).

Remark. Instead of Arzel-Ascoli theorem we can use the following fact:
for a sequence of functions {fi}i∈Z≥0

converges and their second derivatives
are uniformly bounded, then sequence of first derivatives converges too.

Problem 7-6.

Proof. We set x
2

= cos(t). Then the left side can be written is this way:

n∏
k=1

cos(
t

2k
).

We multiply and divide it by 2n

t
sin( t

2n
), which is earning to 1 when n→∞.

We have
∏n

k=1 cos( t
2k

) ∼ cos(2t)
t

. After changing back x to 2 arccos t we solve
the problem. This problem can also be solved by using problem 7-5.

Problems 7-8 and 7-9 immediately follows from the problems 7-1–7-5.
From the problems 7-1–7-9 one can easily get solutions for problems 8-2.

Problem 7-10.

Scetch of a proof. We set f(x) := x−e−
1
x2 (x ≥ 0). For any x > 0 we have

f(x) < x. The only fixed point of f is 0. We define points {xi} in such way
that

f(xi) = xi+1, x0 = 1.

Let δ(x) be a smooth function on [x0, x1], which has zero derivatives of all
orders at x0 and x1. Function f(x)+δ(x) is extendable to the smooth function

on R>0. As any derivative of e−
1
x2 equals 0, the extension would be smooth

at 0.

Part 8

Problem 8-1.

15



Proof. Let Q(x) be a polynom of degree m, such that Q(x) commutes with
P(x). Let q1, . . . , qm−1 be roots of Q′(x). Then the polynom Q(x) − Q(qi)
has multiple roots for all i. Therefore the polynom

Q(x)−Q(P (r)(qi))

has multiple roots for any integer i and any integer r. Hence the set of
numbers {Q(P (n)(qi))} is finite and has not more than m elements. Therefore
there exists a finite set S such that for any polynom Q which satisfies the
conditions of the problem the roots of Q′(x) are contained in S.

Hence it is enough to show that there exists only finite set of polynoms Q,
such that roots of Q′ lies in S and Q(x) commutes with P (x). Such functions
expressed as αQ0 + β, where Q0 depends only on the set of roots of Q′ and
α, β are some numbers. The set of possible coefficients α is finite because
the highest coefficients of

αQ0(P (x)) + β = P (αQ0(x) + β)

have to coincide. Hence the equality

αQ0(P (0)) + β = P (αQ0(0) + β)

provides only finite number of possibilities for β.

Problem 8-2 follows from problems 7-1–7-9.
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