Устная командная олимпиада по математике, 8-9 класс, 2025

Задача 1. Докажите для положительных чисел a, b, c, d неравенство

$$\frac{a^3}{a^2+ab+b^2} + \frac{b^3}{b^2+bc+c^2} + \frac{c^3}{c^2+cd+d^2} + \frac{d^3}{d^2+da+a^2} \geqslant \frac{a+b+c+d}{3}.$$

 $(\Phi$ ольклор)

 $\begin{array}{l} \textit{Решение. } \ \text{Заметим, что} \ \frac{a^3}{a^2+ab+b^2} \geqslant \frac{2}{3}a-\frac{1}{3}b. \ \text{Действительно: } 3a^3 \geqslant (a^2+ab+b^2+b^2)(2a-b) \iff a^3+b^3 \geqslant a^2b+ab^2 \iff (a+b)(a-b)^2 \geqslant 0. \ \text{Остается сложить} \\ \text{все такие оценки.} \end{array}$

Задача 2. Даны натуральные числа $a_0 < a_1 < ... < a_n \leqslant 2^n$. Найдите максимальное значение суммы чисел, обратных НОКам каждой пары (a_i, a_{i+1}) при i=0,1,...,n-1.

(Вариация задачи из книги «104 Number theory problems» Titu Andreesku) $Omsem: 1 - \frac{1}{2n}.$

Решение. Пример на заданный ответ – набор чисел $2^0, 2^1, ..., 2^n$. Тогда сумма чисел, обратных НОКам, $\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}=1-\frac{1}{2^n}$.

Оценка: Заметим, что если b>a, то $\frac{1}{[a,b]}=\frac{(a,b)}{ab}\leqslant \frac{b-a}{ab}=\frac{1}{a}-\frac{1}{b}.$ Остается сложить такие такие оценки по нашим i и получить $1-\frac{1}{2^n}$

Задача 3. При каких натуральных n существуют целые числа $x_1, x_2, \ldots, x_n,$ не все равные, для которых

$$\begin{cases} x_1^2 + x_2 + x_3 + \dots + x_n = 0 \\ x_1 + x_2^2 + x_3 + \dots + x_n = 0 \\ x_1 + x_2 + x_3^2 + \dots + x_n = 0 \\ \vdots \\ x_1 + x_2 + x_3 + \dots + x_n^2 = 0 \end{cases}$$

(Бразилия, 2023)

Omsem: При таких n, что 2n-1 не простое.

Решение. Если n удовлетворяет условию, то можно представить (2n-1)=(2m-1)(2k-1), где m и k>1. Есть решение $x_1=x_2=...=x_{mk}=1-m$, $x_{mk+1}=...=x_n=m$.

Пусть 2n-1=p. Тогда заметим, что $x_1+x_2+...+x_n=x_i-x_i^2$ при $i=1,\,2,...$ n. Однако уравнение $a-a^2=b-b^2$ эквивалентно (a-b)(a+b-1)=0. Это значит, что наши числа либо равны, либо дополняют друг друга до 1. Тогда их можно разбить на группы вида t и 1-t. Не умаляя общности можно считать, что первые s чисел это первая группа. Тогда $t-t^2=st+(n-s)(1-t)$. Тогда $t^2+(2s-n-1)t+n-s=0$. $D=(2s-n-1)^2-4(n-s)=(2s-n)^2-(2n-1)=A^2$. Если 2n-1=p, то (2s-n-A)(2s-n+A)=p. Тогда $(2s-n-A)=\pm 1(2s-n+A)=\pm p$, $p=2n-1=2(2s-n)\pm 1$. Отсюда s=n, тогда все равны, либо 4n=4s-2, что невозможно.

Задача 4. При каких целых неотрицательных m число $(2^{2m+1})^2 + 1$ имеет не более двух различных простых делителей? (Из книги «Number Theory Structures, Examples, and Problems» Titu Andreesku)

Omeem: m = 0, 1, 2.

Решение. Легко видеть, что числа $5, 65, 1025 = 5^2 \cdot 41$ подходят.

Если $m\geqslant 3$, то $(2^{2m+1})^2+1=(2^{2m+1}+2^{m+1}+1)(2^{2m+1}-2^{m+1}+1)$. Скобки отличаются на 2^{m+2} , а потому взаимно просты. Следовательно, каждая из скобок является степенью простого числа. При этом заметим, что $(2^{2m+1})^2+1$ делится на 5, а значит и одна из скобок это степень пятерки. То есть $2^{2m+1}\pm 2^{m+1}+1=5^k$. По модулю 8 левая часть дает остаток 1, а значит k четно, то есть можно переписать в виде k=2l. Отсюда $2^{m+1}(2^m\pm 1)=(5^l-1)(5^l+1)$. Но вторая скобка сравнима с 2 по модулю 4, следовательно в разложении содержит двойку только в первой степени, поэтому $(5^l-1)=2^m(2t-1)$ Если t=1, то $2=(5^l+1)-(5^l-1)=2(2^m\pm 1)-2^m=2^m\pm 2\geqslant 2^3-2$, что невозможно. Если $t\geqslant 2$, то $5^l-1\geqslant 3\cdot 2^m$, однако для второй скобки $5^l+1\leqslant 2(2^m\pm 1)$, что невозможно.

Задача 5. Дано простое число p. Петя и Вася по очереди (начинает Петя) вписывают цифры в свободные клетки полоски $1 \times p$. Петя побеждает, если полученное число (возможно, с ведущими нулями) делится на p, а Вася хочет ему помешать. Кто выигрывает при правильной игре?

(Шорт-лист, 2017)

Ответ: Петя.

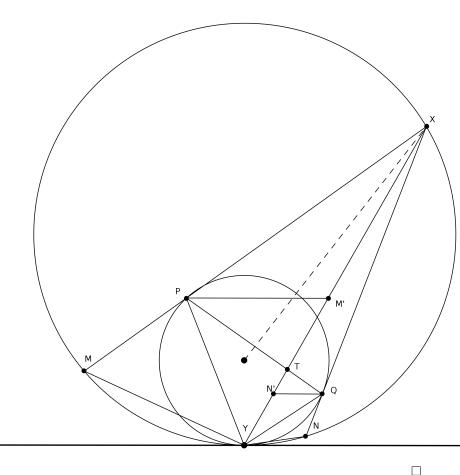
Решение.

Для p=2 или p=5 достаточно написать 0 последней цифрой. Для остальных простых p впишем на первую позицию 0. По МТФ $(10^{\frac{p-1}{2}})^2=10^{p-1}\equiv 1 (modp)$. Тогда $10^{\frac{p-1}{2}}\equiv 1 (modp)$ или $10^{\frac{p-1}{2}}\equiv -1 (modp)$. Разобьем оставшиеся разряды на пары с разницей номеров $\frac{p-1}{2}$. В первом случае на ход Васи цифрой x мы ходим в парный разряд цифрой y-x. Тогда суммарный вклад будет делиться на p по МТФ. Во втором случае на ход Васи цифрой x мы ходим в парный разряд тоже цифрой x. Таким образом в каждой паре суммарный вклад делится на p.

Задача 6. Две окружности касаются внутренним образом. На большей окружности выбрали точку X и провели хорды XM и XN, которые касаются меньшей окружности в точках P и Q соответственно. Докажите, что $MP+NQ\geqslant PQ$.

(Предложил А.Пешнин)

Решение. Не умаляя общности будет считать, что точка касания окружностей лежит снизу, а точка X лежит в правой полуплоскости. Пусть точка касания окружностей Y. Заметим, что по лемме Архимеда YM и YN – биссектрисы углов MYX и NYX. Отразим точки M и N относительно этих биссектрис. Тогда новые точки M' и N' упадут на XY, а отрезки PM и QN перейдут в параллельные из-за вписанности четырехугольника XMYN. Теперь достаточно проверить неравенство между углами QTN' и QN'T, остальное будет следовать из подобия и того факта, что против большего угла лежит большая сторона. Заметим, что общая касательная окружностей параллельна отрезкам PM' и QN' (Угол между касательной в точке Y и хордой YQ равен сумме углов QYXи QXY, которая в свою очередь равна углу YQN и углу YQN'). Тогда ясно, что отрезок QN' при продолжении будет вместе с касательной отсекать от меньшей окружности равные дуги (Точка Y будет серединой). А дуга PQ будет делиться не поровну, поскольку поровну дугу поделит пунктирный луч до центра окружности, а луч XY в наших предположениях пойдет ниже (направление на У пойдет ниже, чем направление на центр меньшей окружности). Тогда если сравнивать углы QTN' и QN'T и разложить их в полусуммы дуг на меньшей окружности, то первые слагаемые будут равные, а для вторых будет искомое неравенство.



Задача 7. В выпуклом четырехугольнике с перпендикулярными диагоналями отметили проекции середин сторон на противоположные стороны. Докажите, что полученные четыре точки лежат на одной окружности.

(Вариация сюжета об окружности 8 точек.)

Решение.

Рассмотрим параллелограмм Вариньона этого четырехугольника. Он в таком четырехугольнике является прямоугольником. Заметим, что проекция середины стороны на противоположную смотрит на диагональ этого прямоугольника под прямым углом. Следовательно все такие точки лежат на описанной окружности прямоугольника.

Задача 8. Вера рисует картину внутри квадрата 1×1 . Она хочет закрасить

несколько непересекающихся квадратов суммарной площади S со сторонами, параллельными сторонам исходного квадрата. При каком наибольшем значении S любой конечный набор квадратов с суммарной площадью S Вера сможет нарисовать?

(Журнал СRUX, 2004 №4, вариация)

Omeem: $S = \frac{1}{2}$

Peшение. Пусть значение $S>\frac{1}{2},$ тогда можно взять два равных квадрата площади более $\frac{1}{4},$ каждый из них содержит центр.

Упорядочим квадраты по убыванию и будем последовательно их выкладывать в ряд по нижней стороне, пока можем. Если очередной квадрат «выпирает», то проведем линию по верхней стороне первого квадрата и продолжим уже по ней аналогичный процесс. И так далее. Рассмотрим высоты самых левых квадратов. Пусть их сумма равна h. Докажем, что $h \leqslant 1$. Площадь всех квадратов можно оценить как $x^2+(1-x)(h-x)$ (первый квадрат $x\times x$, а дальше мы можем использовать то, что первый квадрат в каждом слое это тот, который не влез на предыдущий). С другой стороны сумма площадей квадратов равна $\frac{1}{2}$. Получим

оценку $h\leqslant rac{rac{1}{2}-x^2}{1-x}+x.$ Но $rac{rac{1}{2}-x^2}{1-x}+x\leqslant 1,$ значит все уместится.

Задача 9. Пусть m и n — натуральные числа. Некоторые клетки доски размером $m \times n$ окрашены в красный цвет. Последовательность a_1, a_2, \ldots, a_{2r} из $2r \geqslant 4$ попарно различных красных клеток называется циклом слона, если для каждого $k \in \{1, \ldots, 2r\}$ клетки a_k и a_{k+1} лежат на диагонали, но клетки a_k и a_{k+2} не лежат на диагонали (полагаем $a_{2r+1} = a_1$ и $a_{2r+2} = a_2$).

Определите максимально возможное количество красных клеток на доске размером $m \times n$ без цикла слона. (MEMO-2021)

Omsem: Для полоски $1 \times k$ или $k \times 1 - k$, для доски $m \times n - 2m + 2n - 4$.

Решение. В случае полоски можно закрасить все клетки. Пусть каждая сторона доски не менее 2. В качестве примера можно закрасить два первых столбца, а также первую и последнюю строки. При попытке построить цикл мы уйдем вправо.

Обозначим ячейку в i-й строке и j-м столбце как (i,j). k-я положительная диагональ – это множество ячеек (i,j), такое, что i+j-1=k. Аналогично, k-я отрицательная диагональ – это множество ячеек (i,j), такое, что n+i-j=k. Рассмотрим двудольный граф G с долями $A=\{a_1,a_2,...,a_{m+n-1}\}$ и $B=\{a_1,a_2,...,a_{m+n-1}\}$ и $B=\{a_1,a_2,...,a_{m+n-1}\}$ и $B=\{a_1,a_2,...,a_{m+n-1}\}$

 $\{b_1,b_2,...,b_{m+n-1}\}$, где вершины a_i и b_j соединены ребром тогда и только тогда, когда клетка в пересечении i-й положительной диагонали и j-й отрицательной диагонали красная. Заметим, что цикл слона соответствует циклу в G, и наоборот. Граф G имеет как минимум две компоненты: если мы раскрасим клетки таблицы попеременно в черный и белый цвета, как в шахматах, то рёбра графа G, соответствующие черным клеткам, лежат в другой компоненте, чем рёбра графа G, соответствующие белым клеткам — невозможно переместить слона между черной и белой клетками. Кроме того, граф G имеет 2n+2m-2 вершины. Если граф G ацикличен, то G — это лес, состоящий как минимум из двух деревьев. Следовательно, граф G содержит не более 2n+2m-2-2=2n+2m-4 рёбер, а значит верна оценка и для красных клеток.

Задача 10. Несколько натуральных чисел выписаны в строку. Каждым ходом разрешается выбрать пару чисел x и y таких что x лежит левее y и x>y и заменить на пару (x-1,x) или (y+1,x). Существует ли такой изначальный набор чисел и последовательность операций, при которых процесс будет продолжаться бесконечно?

(Шорт-лист 2012)

Ответ: Нет.

Решение. Заметим, что максимальное число в при заданных операциях не меняется. Заметим также, что с точки зрения лексикографического порядка каждая следующая строка будет больше предыдущего. Но у нас лишь конечное количество строк с заданным максимальным элементом. Поэтому процесс будет конечным.