Математическая регата 22.11.2025

11 класс

Первый тур (10 минут; каждая задача – 6 баллов)

1.1. Решите уравнение:
$$x^{2026} + 2026x = (x^{-1})^{\frac{1}{2026}} + (\frac{1}{2026})^{-1}$$
.

Ответ: 1.

Решение.
$$x^{2026} + 2026x = (x^{-1})^{\frac{1}{2026}} + (\frac{1}{2026})^{-1}$$
 \Leftrightarrow $x^{2026} + 2026x = x^{-\frac{1}{2026}} + 2026$. По

определению степенной функции с отрицательным дробным показателем x > 0. Заметим, что x = 1 является корнем уравнения. Других корней нет, так как функция в левой части уравнения возрастает, а в правой части — убывает.

1.2. Пять квадратов расположены так, как показано на рисунке. Площади четырёх из них даны. Найдите площадь пятого, самого большого.

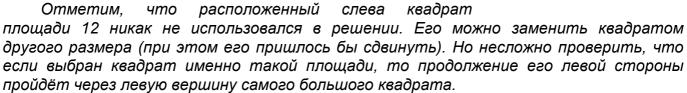
Ответ: 135.

Решение. Обозначим некоторые вершины квадратов буквами A, B, C и D, найдём и укажем на чертеже длины сторон трёх квадратов

справа (см. рис. 1). Кроме того, проведём перпендикуляры *АН* Рис. 1 и *BE* к горизонтальным сторонам квадрата площади 27.

Заметим, что $CE = \sqrt{3}$ (разность длин сторон двух квадратов), $AH = 6\sqrt{3}$ (сумма длин сторон трёх квадратов), $tg\angle ADH = tg\angle BCE = 2$, значит, $DH = \frac{AH}{2} = 3\sqrt{3}$. Тогда искомая площадь равна $AD^2 = DH^2 + AH^2 = 3\cdot9 + 3\cdot36 = 135$.

Также можно использовать подобие треугольников BCE и ADH.



12

1.3. Найдите количество трёхзначных чисел, у которых сумма цифр равна 10.

Ответ: 54.

Решение. <u>Первый способ</u>. Каждому трехзначному числу с суммой цифр 10 поставим в соответствие ряд из 10 шариков, каждый из которых соответствует единице, и двух перегородок. Так как первая цифра числа не равна нулю, этот ряд начинается с шарика, то есть для перегородок остается два из 11 мест. Кроме того, обе перегородки не могут стоят в конце, потому что нулей в числе не более одного. Таким образом, искомое количество чисел равно $C_{11}^2 - 1 = \frac{11 \cdot 10}{2} - 1 = 54$.

Второй способ. Если на первом месте числа стоит 9, то чисел, удовлетворяющих условию, два: 910 и 901, если на первом месте 8, то таких чисел три: 820, 802 и 811, если 7 — то четыре, и так далее, если на первом месте стоит 2, то чисел 9, а если 1 — то 10. Таким образом, всего искомых чисел: 2 + 3 + 4 + ... + 8 + 9 + 10 = 54.

Второй тур (15 минут; каждая задача – 7 баллов)

2.1. Решите систему уравнений:
$$\begin{cases} x^2 = y^3 - 3y^2 + 2y, \\ y^2 = x^3 - 3x^2 + 2x \end{cases}$$

ОТВЕТ: (0; 0); $(2 + \sqrt{2}; 2 + \sqrt{2})$; $(2 - \sqrt{2}; 2 - \sqrt{2})$.

Решение. Из первого уравнения: $y^3 + 2y = x^2 + 3y^2 \ge 0$, значит, $y \ge 0$. Из второго уравнения аналогично следует, что $x \ge 0$.

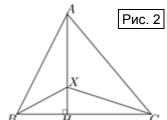
Вычитая второе уравнение из первого, получим следствие системы: $x^2 - y^2 = y^3 - x^3 - 3(y^2 - x^2) + 2(y - x) \Leftrightarrow (y - x)(y^2 + xy + x^2 - 2y - 2x + 2) = 0 \Leftrightarrow (y - x)((y - 1)^2 + (x - 1)^2 + xy) = 0$. Так как при $x \ge 0$ и $y \ge 0$ каждое слагаемое во второй скобке неотрицательно и они одновременно не обращаются в нуль, то выражение в этой скобке принимает только положительные значения. Значит, произведение равно нулю только в случае, когда y = x.

Подставив это в любое из уравнений, получим: $x^3 - 4x^2 + 2x = 0 \Leftrightarrow x(x^2 - 4x + 2) = 0 \Leftrightarrow x = 0$ или $x = 2 \pm \sqrt{2}$, откуда и следует ответ.

2.2. На высоте AH остроугольного треугольника ABC отмечена внутренняя точка X. Оказалось, что AB + CX = AC + BX. Обязательно ли треугольник ABC — равнобедренный?

Ответ: обязательно

Решение. Рассмотрим четырёхугольник *ABXC*, диагонали которого перпендикулярны (см. рис. 2). По свойству таких четырёхугольников: $AB^2 + CX^2 = AC^2 + BX^2 \Leftrightarrow AB^2 - AC^2 = XB^2 - XC^2 \Leftrightarrow (AB - AC)(AB + AC) = (XB - XC)(XB + XC)$ (1). Равенство из условия можно записать в виде: AB - AC = XB - XC (2).



Пусть $AB \neq AC$. Тогда, разделив почленно равенство (1) на B = H = C равенство (2), получим: что AB + AC = XB + XC. Однако, по «неравенству резинки» для любой точки X, лежащей внутри треугольника ABC + AB + AC > XB + XC. Полученное противоречие показывает, что AB = AC, то есть треугольник ABC - равнобедренный.

Отметим, что использованное свойство четырёхугольников с перпендикулярными диагоналями несложно получить, применив теорему Пифагора к каждому из четырёх прямоугольных треугольников (см. рис. 2). Кроме того, ту же идею решения можно реализовать иначе: из равенств $AB^2 + CX^2 = AC^2 + BX^2$ и AB + CX = AC + BX следует, что AB = AC и CX = BX или AB = BX и AC = CX. Но второй случай невозможен, так как углы AXB и AXC - тупые.

2.3. Пусть k — натуральное число. Известно, что среди 29 последовательных чисел 30k + 1, 30k + 2, . . ., 30k + 29 имеется 7 простых. Докажите, что первое и последнее из этих 29 чисел — простые.

Решение. Так как 30 делится на 2, на 3 и на 5, то простыми могут оказаться только восемь чисел: 30k + 1, 30k + 7, 30k + 11, 30k + 13, 30k + 17, 30k + 19, 30k + 23, 30k + 29. Тогда из условия следует, что наименьшее или наибольшее из этих чисел должно быть простым. Но эти два числа имеют одинаковые остатки при делении на 7, а оставшиеся шесть чисел имеют все остальные возможные остатки при делении на 7. Поэтому среди этих шести найдётся число кратное семи, а так как каждое из них больше, чем 30, то оно будет составным. Следовательно, семь простых чисел в данном наборе могут быть только в случае, когда простыми являются и первое, и последнее число.

Отметим, что набор чисел, указанных в условии, существует. Например, при k=1 (числа от 31 до 59).

Третий тур (20 минут; каждая задача – 8 баллов)

3.1. Изобразите на координатной плоскости множество точек, координаты которых удовлетворяют неравенству: $x^2 - \left(y + \frac{1}{v}\right)x + 1 > 0$.

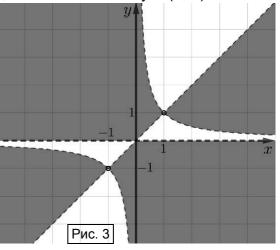
Ответ: см. рис. 3.

Решение. Так как $y \neq 0$, то ось абсцисс не принадлежит искомому множеству. Также заметим, что если пара $(x_0; y_0)$ является решением данного неравенства, то и пара $(-x_0; -y_0)$ — его решение. Следовательно, искомое множество симметрично относительно начала координат. Кроме того, неравенство выполняется при любых x < 0, y > 0, а также,

если x = 0. Таким образом, искомому множеству принадлежат все точки, лежащие во II и IV координатных четвертях, включая точки оси ординат, но исключая точку O(0; 0).

В дальнейшем достаточно рассматривать данное неравенство только для точек I координатной четверти, то есть при x>0 и y>0. Тогда можно рассуждать по-разному.

<u>Первый способ.</u> Рассмотрим квадратичную функцию $f(x) = x^2 - \left(y + \frac{1}{y}\right)x + 1$. Её графиком является парабола, ветви которой направлены вверх, f(x) = 0 при x = y или $x = \frac{1}{y}$. Значит, если $x_1 \le x_2$, то $x < x_1$ или $x > x_2$. Заметим, что $y = \frac{1}{y}$ при y = 1;



$$y > \frac{1}{y}$$
 при $y > 1$; $y < \frac{1}{y}$ при $0 < y < 1$. Значит, если $y \in (0; 1]$, то $x < y$ или $x > \frac{1}{y} \Leftrightarrow y > \frac{1}{x}$; если $y \in [1; +\infty)$, то $x < \frac{1}{y} \Leftrightarrow y < \frac{1}{x}$ или $x > y$.

Построив соответствующее множество точек в I четверти и ему симметричное в III четверти, получим ответ.

Второй способ. Разделив обе части неравенства на x > 0, получим: $x - y - \frac{1}{y} + \frac{1}{x} > 0$ $\Leftrightarrow x - y - \frac{x - y}{xy} > 0 \Leftrightarrow \frac{(y - x)(xy - 1)}{xy} < 0$. Учитывая, что x > 0, y > 0, получим: $x < y < \frac{1}{x}$ или $\frac{1}{x} < y < x$. Построив соответствующее множество точек в I четверти и ему симметричное в III четверти, получим тот же ответ.

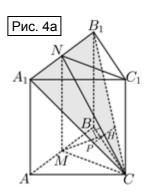
Также возможны способы решения, которые не используют симметрию искомого множества. Например, исходное неравенство можно привести к виду: $x^2 - \frac{y^2x + x}{y} + 1 > 0$ $\Leftrightarrow \frac{(x-y)(xy-1)}{y} > 0$ и построить графики функций y = x и $y = \frac{1}{x}$. Далее рассмотреть все части координатной плоскости, на которые её разбивают эти графики и ось абсцисс. На каждой из таких частей выражение $\frac{(x-y)(xy-1)}{y}$ сохраняет знак. Эти знаки можно определить, подставив в это выражение координаты какой-либо точки, принадлежащей соответствующей части, и выбрать те части, для которых полученные выражения принимают положительные значения.

3.2. В правильной треугольной призме, каждое ребро которой равно 1, найдите расстояние между двумя отрезками: ребром основания и скрещивающейся с ним диагональю боковой грани.

Ответ:
$$\frac{\sqrt{21}}{7}$$
.

Решение. Пусть призма $ABCA_1B_1C_1$ удовлетворяет условию. Сначала найдём расстояние от прямой, содержащей ребро AB, до прямой, содержащей скрещивающуюся с ним диагональ A_1C боковой грани, а затем перейдём к соответствующим отрезкам.

<u>Первый способ.</u> Проведём плоскость A_1B_1C , содержащую прямую A_1C и параллельную прямой AB, так как $AB \parallel A_1B_1$ (см. рис. 4а). Тогда искомое расстояние равно расстоянию от прямой AB до плоскости A_1B_1C . Пусть M и N — середины ребер AB и A_1B_1 соответственно, тогда $CM \perp AB$ и $CN \perp AB$ (по теореме о трёх перпендикулярах). Следовательно, $AB \perp CMN$, поэтому перпендикуляр MH к прямой CN перпендикулярен AB и плоскости A_1B_1C . Значит, искомое расстояние между прямыми равно длине MH.



В треугольнике *CMN*: *MN* = 1, *CM* =
$$\frac{\sqrt{3}}{2}$$
, $CN = \sqrt{1 + \frac{3}{4}} = \frac{\sqrt{7}}{2}$, значит,

$$MH = \frac{CM \cdot MN}{CN} = \sqrt{\frac{3}{7}} = \frac{\sqrt{21}}{7}$$
.

Проекцией прямой AB на параллельную ей плоскость A_1B_1C является прямая, которая параллельна AB и A_1B_1 и проходит через точку H. Эта прямая пересекает отрезок A_1C в точке P. Если провести через P прямую, параллельную MH до пересечения с AB, то получившийся отрезок будет общим перпендикуляром прямых AB и A_1C . Так как H лежит внутри треугольника A_1B_1C , то $PH < A_1N = AM$, поэтому точка пересечения попадёт внутрь отрезка AM, значит, общий перпендикуляр прямых AB и A_1C соединяет точки отрезков AB и A_1C , поэтому его длина является расстоянием не только между прямыми, но и между этими отрезками.

перпендикулярности MN прямым AB и A_1C можно записать так: $\begin{cases} \overline{MN} \cdot \overline{AB} = 0, \\ \overline{MN} \cdot \overline{A_1C} = 0 \end{cases} \Leftrightarrow \begin{cases} \left(y\vec{a} + (1-y)\vec{c} - x\vec{b}\right) \cdot \vec{b} = 0, \\ \left(y\vec{a} + (1-y)\vec{c} - x\vec{b}\right) \cdot (\vec{c} - \vec{a}) = 0. \end{cases}$. Раскрыв скобки и подставив значения

скалярных произведений, получим:
$$\begin{cases} 0.5(1-y) - x = 0, \\ -y + (1-y) - 0.5x = 0 \end{cases} \Leftrightarrow \begin{cases} 2x + y = 1, \\ x + 4y = 2 \end{cases} \Leftrightarrow \begin{cases} x = \frac{2}{7}, \\ y = \frac{3}{7}. \end{cases}$$

Тогда
$$\overline{MN} = \frac{3}{7}\vec{a} + \frac{4}{7}\vec{c} - \frac{2}{7}\vec{b}$$
 , значит, $\left|\overline{MN}\right| = \frac{1}{7}\sqrt{\left(3\vec{a} + 4\vec{c} - 2\vec{b}\right)^2} = \frac{1}{7}\sqrt{9 + 16 + 4 - 2 \cdot 2 \cdot 4 \cdot 0, 5} = \frac{\sqrt{21}}{7}$.

При этом, так как 0 < x < 1, то точка M лежит внутри отрезка AB, а так как y > 0 и 1 - y > 0, то точка N лежит внутри отрезка A_1C . Следовательно, $\left|\overline{MN}\right| -$ это и есть расстояние между отрезками AB и A_1C .

3.3. Можно ли расставить числа 1, 2,..., 2025 по кругу так, чтобы из любой тройки подряд идущих чисел можно было составить арифметическую прогрессию?

Ответ: можно.

Решение. Например, см. рис. 5.

В этом примере по часовой стрелке от числа 3 расставлены нечётные числа, а против часовой стрелки — чётные.

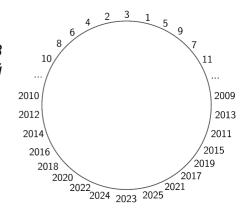


Рис. 5

Четвертый тур (25 минут; каждая задача – 9 баллов)

4.1. Докажите, что $tg\alpha + tg(\alpha + 20^\circ) + tg(\alpha + 40^\circ) + ... + tg(\alpha + 140^\circ) + tg(\alpha + 160^\circ) = 9tg9\alpha$. **Решение**. Лемма. $tgx + tg(x + 60^\circ) + tg(x - 60^\circ) = 3tg3x$.

<u>Доказательство</u>. Сначала используем формулу тангенса суммы, а после алгебраических преобразований – формулу тангенса тройного аргумента. Получим: tgx +

$$tg(x + 60^{\circ}) + tg(x - 60^{\circ}) = tgx + \frac{tgx + \sqrt{3}}{1 - \sqrt{3}tgx} + \frac{tgx - \sqrt{3}}{1 + \sqrt{3}tgx} = tgx + \frac{8tgx}{1 - 3tg^2x} = \frac{9tgx - 3tg^3x}{1 - 3tg^2x} = \frac{9tgx - 3tg^2x}{1 - 3tg^2x$$

$$3 \cdot \frac{3tgx - tg^3x}{1 - 3tg^2x} = 3tg3x.$$

Так как формула тангенса тройного аргумента малоизвестна, то покажем, как её получить: $tg3x = \frac{\sin 3x}{\cos 3x} = \frac{3\sin x - 4\sin^3 x}{4\cos^3 x - 3\cos x} = \frac{3tgx/\cos^2 x - 4tg^3 x}{4 - 3/\cos^2 x} = \frac{3tgx(1 + tg^2 x) - 4tg^3 x}{4 - 3(1 + tg^2 x)} = \frac{3tgx(1 + tg^2 x) - 4tg^3 x}{4 - 3(1 + tg^2 x)}$

$$\frac{3tgx - tg^3x}{1 - 3tg^2x}.$$

Воспользуемся доказанной леммой трижды: для $x = \alpha + 60^\circ$, $x = \alpha + 80^\circ$, $x = \alpha + 100^\circ$: $tg\alpha + tg(\alpha + 60^\circ) + tg(\alpha + 120^\circ) = 3tg(3\alpha + 180^\circ) = 3tg3\alpha$;

$$tg(\alpha + 20^{\circ}) + tg(\alpha + 80^{\circ}) + tg(\alpha + 140^{\circ}) = 3tg(3\alpha + 240^{\circ}) = 3tg(3\alpha + 60^{\circ});$$

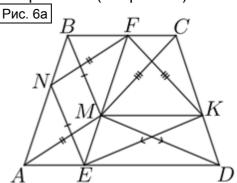
$$tg(\alpha + 40^{\circ}) + tg(\alpha + 100^{\circ}) + tg(\alpha + 160^{\circ}) = 3tg(3\alpha + 300^{\circ}) = 3tg(3\alpha - 60^{\circ}).$$

Сложив почленно эти три равенства и ещё раз используя лемму, получим: $tg\alpha + tg(\alpha + 20^\circ) + tg(\alpha + 40^\circ) + ... + tg(\alpha + 140^\circ) + tg(\alpha + 160^\circ) = 3tg3\alpha + 3tg(3\alpha + 60^\circ) + 3tg(3\alpha - 60^\circ) = 9tg9\alpha$, что и требовалось.

4.2. Точка, лежащая внутри равнобедренной трапеции, отношение оснований которой меньше чем 2 : 1, соединена отрезками со всеми вершинами. Докажите, что из этих четырёх отрезков можно сложить границу четырёхугольника, вписанного в эту трапецию (на каждой стороне трапеции лежит по одной вершине этого четырёхугольника).

Решение. Пусть дана трапеция ABCD и точка M внутри неё. Равнобедренная трапеция симметрична относительно серединного перпендикуляра к основаниям, поэтому достаточно рассмотреть случай, когда точка M расположена в той же полуплоскости относительно оси симметрии, что и боковая сторона AB (см. рис. 6а).

Проведем через точку M прямую, параллельную Рис. 6а AB, которая пересекает AD и BC в точках E и F соответственно, тогда ABFE — параллелограмм, значит, AB = FE и AE = BF. Так как M и AB расположены по одну сторону от серединного перпендикуляра к AD, то AE < 0.5AD < BC, поэтому точка F лежит внутри отрезка BC. Через точку E проведем прямую, параллельную AB, до пересечения с AB в точке AB0, тогда ABBM0 — также параллелограмм, значит, ABBM0 — ABBMM0 — Также параллелограмм, значит, ABBMM0 — Также параллелограмм — Также параллел



AN = AB - BN = FE - EM = FM, значит в четырехугольнике ANFM противоположные стороны равны и параллельны, поэтому он также параллелограмм, откуда MA = NF.

Теперь проведем через точку M прямую, параллельную BC, до пересечения с CD в точке K. Так как $MK \parallel ED$, $EF \parallel AB$ и углы при основаниях трапеции ABCD равны, то $\angle FMK = \angle FED = \angle BAD = \angle CDE = \angle CKM$, значит углы при основаниях трапеций MFCK и EMKD также равны, то есть обе трапеции равнобедренные. Тогда равны их диагонали: MC = FK и MD = KE.

M'

Таким образом, четырёхугольник *ENFK* вписан в исходную трапецию, а его стороны соответственно равны отрезкам *MA, MB, MC* и *MD*, что и требовалось.

Также можно разрезать исходную трапецию по прямой EF и переместить параллелограмм ABFE так, чтобы вершина A совместилась с C, а вершина B-c D A E (см. рис. 6б). Получим трапецию EFE'F', равную

исходной, причём точка M займет положение M'. Тогда четырёхугольник MCM'D будет вписан в полученную трапецию, а его стороны будут равны MA, MB, MC и MD.

4.3. Имеется n камней, которые можно разложить на две, три, четыре или пять кучек так, чтобы при каждом таком разбиении массы кучек были равны. При каком наименьшем n это возможно?

Ответ: при *n* = 9.

Решение. Пусть суммарная масса всех камней равна 60m. Тогда разбиения на две, три, четыре и пять кучек с равными массами соответственно выглядят так: 60m = 30m + 30m; 60m = 20m + 20m + 20m; 60m = 15m + 15m + 15m + 15m и 60m = 12m + 12m + 12m + 12m.

Предположим, что камней не больше, чем 7. Тогда при разбиении на 5 кучек не меньше трёх камней должны иметь массу 12m (по принципу Дирихле), а масса каждого из остальных — не больше, чем 12m. Тогда для разбиения на 4 кучки потребуется не меньше, чем 8 камней (3 камня по 12m и ещё хотя бы 5). Противоречие. Значит, камней не меньше, чем 8.

Пусть камней 8, тогда из разбиения на 5 кучек получим, что есть хотя бы 2 камня, масса каждого из которых равна 12m. Следовательно, при разбиении на 4 кучки получим, что каждая кучка состоит из двух камней и среди них есть 2 камня массой 3m. Кроме того, есть еще 4 камня, из которых можно сложить две кучки по 15m, а если к ним добавить два камня массой 3m, то из шести камней можно сложить 3 кучки по 12m. Также, для того, чтобы сложить три кучки по 20m, должно быть хотя бы три камня, масса которых не кратна 3m.

Пусть массы этих четырёх камней: k, n, p, q. Тогда k+n=p+q=15m, но если массы хотя бы трёх из них не делятся на 3m, то на 3m не делится и масса четвертого. В кучке массой 12m не может быть только один камень из набора k, n, p, q (так как 12m кратно 3m), и не может быть три камня (так как масса любых трёх из них больше 15m), значит, k, n, p, q попадут в две кучки по 12m парами, но тогда суммарная масса в этих двух кучках будет больше, чем 24m. Таким образом, камней должно быть не меньше, чем 9.

Приведём пример для девяти камней. Пусть их массы: 12m, 10m, 9m, 8m, 7m, 5m, 4m, 3m, 2m. Тогда 12m + 10m + 8m = 9m + 7m + 5m + 4m + 3m + 2m; 12m + 8m = 10m + 7m + 3m = 9m + 5m + 4m + 2m; 12m + 3m = 10m + 5m = 8m + 7m = 9m + 4m + 2m; 12m = 10m + 2m = 9m + 3m = 8m + 4m = 7m + 5m.

Пятый тур (15 минут; каждая задача – 7 баллов)

5.1. Докажите, что для любых значений x выполняется неравенство: $x^4 \ge 4x - 3$.

Решение. <u>Первый способ</u>. Так как $x^4-4x+3=x^4-2x^2+1+2x^2-4x+2=\left(x^2-1\right)^2+2\left(x-1\right)^2\geq 0$, то $x^4\geq 4x-3$.

Второй способ. Так как
$$x^4 - 4x + 3 = x^4 - x^3 + x^3 - x^2 + x^2 - x - 3x + 3 = (x - 1)(x^3 + x^2 + x - 3) = (x - 1)(x^3 - 1 + x^2 - 1 + x - 1) = (x - 1)^2(x^2 + 2x + 3) = (x - 1)^2((x + 1)^2 + 2) \ge 0$$
, то $x^4 \ge 4x - 3$.

<u>Третий способ</u>. При x < 0 неравенство выполняется, так как его левая часть принимает положительные значения, а правая — отрицательные. При $x \ge 0$ по неравенству между средним арифметическим и средним геометрическим $x^4 + 3 = x^4 + 1 + 1 + 1 \ge 4 \sqrt[4]{x^4} = 4x$, откуда $x^4 \ge 4x - 3$.

<u>Четвёртый способ</u>. Пусть $f(x) = x^4 - 4x + 3$. Эта функция определена и дифференцируема на R, $f'(x) = 4x^3 - 4 = 4(x-1)(x^2 + x + 1)$. f'(x) = 0 при x = 1 и при «переходе» через эту точку слева направо меняет знак с «—» на «+», поэтому x = 1 точка минимума f(x). Это единственная точка экстремума, поэтому в ней функция принимает наименьшее значение. Так как f(1) = 0, то $x^4 - 4x + 3 \ge 0 \Leftrightarrow x^4 \ge 4x - 3$.

5.2. Два равных правильных шестиугольника со стороной 10 имеют общий центр. Докажите, что площадь их общей части не меньше, чем 225.

Решение. Из того, что два равных правильных шестиугольника имеют общий центр, следует, что вписанная окружность у них общая. Все точки вписанного круга принадлежат каждому из шестиугольников, а значит принадлежат и их общей части, откуда площадь

общей части не меньше площади вписанного круга. Его радиус $r=\frac{10\sqrt{3}}{2}=5\sqrt{3}$, значит, его

площадь равна $\pi r^2 = \left(5\sqrt{3}\right)^2 \pi = 75\pi$. Так как $75\pi > 75 \cdot 3 = 225$, то и площадь общей части двух шестиугольников больше, чем 225.

5.3. Найдите все натуральные решения уравнения: $3^n = 2^{n+2} + 2^n + 1$.

Ответ: 4.

Решение. Первый способ. Перебором убеждаемся, что при $n \le 3$ выполняется неравенство $3^n < 2^{n+2}$, то есть эти натуральные числа решениями уравнения не являются. При n = 4 данное уравнение обращается в верное равенство. Докажем, что при $n \ge 5$ выполняется неравенство $3^n > 2^{n+2} + 2^n + 1 = 5 \cdot 2^n + 1$, используя метод математической индукции.

База индукции. Если n = 5, то $3^5 = 243 > 5 \cdot 2^5 + 1 = 161$.

<u>Шаг индукции.</u> Пусть неравенство верно для n = k, то есть $3^k > 5 \cdot 2^k + 1$. Тогда при n = k + 1 получим: $3^{k+1} = 3 \cdot 3^k > 3(5 \cdot 2^k + 1) = 15 \cdot 2^k + 3 > 10 \cdot 2^k + 1 = 5 \cdot 2^{k+1} + 1$.

Таким образом, требуемое неравенство выполняется для всех натуральных $n \geq 5$, поэтому найденный корень уравнения — единственный.

Второй способ. Разделив обе части уравнения на 2^n , получим: $\left(\frac{3}{2}\right)^n = 5 + \left(\frac{1}{2}\right)^n$. В

левой части этого уравнения — возрастающая последовательность, а в правой — убывающая, поэтому уравнение имеет не более одного корня. Перебором находим, что n = 4.

Заметим, что если в условии заменить п на x, а в этом способе решения ещё и заменить слово «последовательность» на слово «функция», то решение останется верным. Поэтому 4 является единственным корнем данного уравнения не только на множестве натуральных чисел, но и на множестве вещественных.